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Chapter 1

Generalities

1.1 Introduction

Cryscor is a post-Hartree-Fock (HF) local-correlation program for crystalline solids [1, 2].
Since the reference HF solution is provided by the Crystal code [3], it can be considered as the
post-HF option of it.

The post-HF method currently implemented is a perturbative method, namely Møller-Plesset
at the second-order (MP2). Well localized symmetry adapted Wannier Functions (WF) [4, 5, 6]
are adopted instead of delocalized Bloch functions for the description of the occupied manifold; this
permits the exploitation of the short-range nature (E ∝ r−6) of electron correlation following the
general Pulay scheme [7, 8] as implemented in the molecular Molpro code [9]. Its generalization
to periodic 3D systems requires the full exploitation of both point and translational symmetry and
permits O(N ) scaling of computational costs, N being the size of the unit cell of the crystal. The
essentials of this method are described in Chapter 11.

Note that the localization procedure and the MP2 technique implemented in
Cryscor are not suitable for open-shell systems, for conductors, or for semiconductors
with very small gap.

1.2 Conventions

In the description of the input data the following notation is adopted:

- • new record

- [ ] default values.

- { } suggested values.

The A, I and F letters label alphabetic, integers and float data type, respectively.

All keywords are entered with a case insensitive format; they must be typed left-justified with
no leading blanks.
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The following acronyms are used (see Chapter 11 for details):

- AO Atom-centred Atomic Orbital obtained as a linear combination of
Gaussian Type Orbitals (GTO)

- WF Wannier Functions, basis set for the occupied manifold

- WFf “Flower” of symmetry adapted WFs, basis for a representation of
the point group

- PAO Projected Atomic Orbitals, basis set for the virtual space

- FF Fitting Functions for the Density Fitting approximation of two-
electron integrals

1.3 Functionality

The basic functionality of the code is outlined below.

Local features

• Hierarchical treatment of biexcitations
• Definition of the virtual manifold according to different criteria
• Lennard-Jones extrapolation for evaluating long-range energy contributions

Evaluation of bielectronic integrals

• Exact method
• Periodic Density Fitting technique in both direct and reciprocal space
• Multipolar expansion

One-electron Density Matrix

• MP2 correction to the HF Density Matrix feasible
(the MP2-corrected Density Matrix can be passed to the Properties code)

Basis set

• Automatic tranfer of Basis set information from Crystal to Cryscor

• Dual Basis set option for improving the description of the virtual manifold
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1.4 Citing Cryscor

When a user presents to the scientific community (publications or congresses) any result obtained
with Cryscor, he has to cite the program in the proper way as follows:

• C. Pisani, L. Maschio, S. Casassa, M. Halo, M. Schütz and D. Usvyat, J. Comput. Chem.,
29, 2113 (2008); A. Erba and M. Halo, CRYSCOR09 User’s manual, University of Torino,
Torino, 2009 (www.cryscor.unito.it).

1.5 The Molpro contribution

The Density Fitting module of the Cryscor program is based, upon license, on the corresponding
module of the Molpro molecular program [F. R. Manby, P. J. Knowles, and A. W. Lloyd, J.
Chem. Phys. 115, 9144 (2001)].

1.6 How to run a Cryscor job

To execute a Cryscor job, you have to run two preliminary calculations. The first one is a Crys-

tal calculation, performed at HF level; from this run, along with the output file (filename1.out),
you get the unformatted external unit 9 (fort.9 ) or the formatted external unit 98 (fort.98 ) which
contain information about the geometry, symmetry, computed wavefunction, Fock and Density
matrices. The use of the TOLMP2 keyword, which sets the tolerances of the HF calculation to
convenient values for the subsequent correlation calculations, is recommended. As a second step
you have to run a Properties calculation for transforming the canonical Crystalline Orbitals into
localized Wannier functions; in order to do that, you need feeding the fort.9 (or fort.98 ) unit to
Properties. This second run generates the unformatted external unit 80 (fort.80 ). A Cryscor

run needs both units 9 and 80.
The formatted unit 98 can be transformed into the corresponding unformatted unit 9 by means

of the RDFMWF keyword of the Properties program.
For more details about how to run a Crystal calculation please refer to Crystal User’s Manual

[3] and to Crystal web page: www.crystal.unito.it.
On Unix systems, the Crystal, Properties and Cryscor executables can be called via the

standard scripts: runcry09, runprop09 and runcryscor09. A common sequence of commands
is schematized in what follows:

A. runcry09 filename1
The input file filename1.d12 must be there; this script launches the Crystal calculation
and automatically saves in your working directory both the output file filename1.out and the
unit 9 as filename1.f9.

B. runprop09 filename2 filename1
Both the Properties input file (filename2.d3, see below, Section 2) and unit 9 (filename1.f9 )
must be there. This script saves the output file (filename2.outp) and unit 80 as filename2.f80 ;
this unit contains information about the localized and symmetrized WFs.
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Program input file output file unit saved
Crystal .d12 .out .f9, [.f98]

[.f78 (see page 31)]
Properties .d3 .outp .f80

[.f81 (for WFs restart, see Crystal Manual)]
Cryscor .d4 .outc [.f84 and .f151 (see page 25)]

[.f131, .f132 and .f133 (see page 24)]
[.f63 (see page 32)]

Table 1.1: A summary of the extensions of input/output files and external units.

C. runcryscor09 filename3 filename1 filename2
Each Cryscor run needs an input file (filename3.d4 ), and the external units 9 and 80 (file-
name1.f9 and filename2.f80 ). This script generates the output file filename3.outc and some
external units that can be useful for later calculations (see Table 1.1 for more information).

Once the runcry09 and runprop09 scripts have been correctly set up (i.e. when the necessary
environment variables have been defined), you can use the runcryscor09 script without setting
any new variable; the only thing you should take care of is to put your cryscor executable in the
same directory of your crystal and properties executables.

1.7 Bugs Reporting

The authors would greatly appreciate comments, suggestions and criticisms by the users of Cryscor;
consult our forum on the Cryscor website www.cryscor.unito.it for more details. When reporting
a bug, the user is asked to provide all the input and output files (.d12, .out, .d3, .outp, .d4 and
.outc) along with the external fortran units 9 and 80.

1.8 Acknowledgments

The authors are grateful to Prof. Claudio Zicovich-Wilson and to Prof. Roberto Dovesi.
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Chapter 2

The main ingredient: Wannier Functions

The post-HF correlation method which is currently implemented in the Cryscor program is the
MP2 one reformulated according to the so-called local approach which implies the use of localized
functions in the description of the occupied and virtual manifolds. The accurate description of the
occupied space has of course a great relevance in the determination of the correlation energy.

In order to describe the occupied manifold, Wannier Functions (WF) are used instead of delo-
calized Bloch Functions (BF). While BFs are translationally invariant apart from a phase factor,
WFs are translationally equivalent. Some further information about WFs is provided in Chapter
11.

A Properties input file (with extension .d3, see Table 1.1) has to be prepared in order to
obtain well localized and Symmetry Adapted WFs (SAWF). The definition of WFs is controlled
by an input block, opened by the LOCALWF keyword and containing a set of keywords, as
explained in the Crystal User’s Manual [3]; a mandatory keyword among them is VALENCE,
since we only perform valence-electron correlation.

A typical input file for the localization/symmetrization procedure looks like that:

NEWK Diagonalization of the Fock matrix
8 8 8 Shrinking factor
1 0 Fermi energy is computed
LOCALWF Start of the localization input block
VALENCE Only valence orbitals are localized
SYMMWF Start of the symmetrization input block
END End of the symmetrization input block
END End of the localization input block
END End of the properties input block

Table 2.1: The simplest possible localization input.

The a posteriori symmetrization procedure, mandatory in the case of a subsequent MP2 calculation
with Cryscor, is activated by means of the SYMMWF keyword. This procedure [6] and the
corresponding symmetry-based classification of WFs are discussed in the following section.

9



2.1 The symmetrization step

The symmetrization of the WFs is a computationally convenient step since it allows the full
exploitation of the point-symmetry of the system and at the same time it reduces the numerical
noise of the computed values.

For the time being, the WFs are symmetrized after the localization step that is, by following a
so-called a posteriori scheme which can be outlined as follows:

1. after the localization step, the WFs are centered at different sites of the reference cell which
are invariant with respect to point-symmetry subgroups H of the space groupG of the crystal;

2. for each site, a coset decomposition of G can be performed, induced by H , thus leading to
the definition of NF = |G|

|H|
symmetry operators (coset representatives) which rotate the site

into equivalent ones;

3. among each set of equivalent sites, a reference site is chosen;

4. the WFs of each reference site are symmetrized according to the corresponding invariant
subgroup H: such WFs turn out to be basis functions of the irreducible representations
(IRREP) of the subgroup H and hereafter will be referred to as petals;

5. the collection of petals which constitute a basis for a given IRREP of H constitutes a so-called
flower. It is worth noting that bi/tri-dimensional IRREPs give rise to flowers made up of
two/three petals, respectively;

6. the rotation of the reference flower performed by means of the corresponding NF -1 coset rep-
resentatives (identity excluded) yields the creation of other NF -1 symmetry related flowers;
the set of such equivalent flowers constitutes a bunch;

7. in general, more than one bunch could be associated to the same reference site;

8. all the SAWFs of the reference cell are then replicated in the other cells of the crystal;

9. as a result of this procedure, each WF is fully classified by four indices |b,f,p,g〉 (b = bunch,
f=flower, p= petal, g= crystal cell) such that a general symmetry operator of the system

R̂ ∈ G, applied to a WF gives: R̂ |b,f,p,g〉 =
∑

p′[A
b(R)]pp′ |b,f

R,p’,gR〉.

2.1.1 An example: the three-layers slab of MgO

In order to help the user in the comprehension of the symmetry relations which occur among the
symmetrized WFs, we present in some detail a simple example: a three-layers slab of MgO. The
structure of this system is sketched in Figures 2.1 and 2.2 along with the schematic representation
of the symmetry properties of the valence WFs of the system.

The unit cell of the system contains two atoms per layer: one Oxygen (O) and one Magnesium
(Mg). Since we are neglecting core WFs, the Oxygen atom only hosts the valence WFs of the
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system: four per O atom, one s-type, one pz-type, one px-type and one py-type. The total number
of electrons per cell is 24 and the number of WFs per cell is 12.

The 12 WFs are centered at three distinct sites: the O atom of the top layer (O1), the O
atom of the central layer (O2) and the O atom of the bottom layer (O3). The O2 atom belongs
to a site which is characterized by the whole point-symmetry of the system (D4h). According to
what we have stated before, each flower centered on it has to be invariant under the action of
any symmetry operator of the Point Symmetry Group P of the crystal; as a consequence, this site
can not be symmetry related to any other one in the crystal. The O1 and O3 atoms belong to
two symmetry-related sites characterized by an invariant subgroup of symmetry H (C4v) whose
order is half the order of P ; it follows that each flower centered on O1 can be rotated into an
equivalent one centered on O3 by means of a symmetry operator (the representative of the coset
decomposition of G, induced by H , that is the mirror plane which coincides with the central layer
of the slab).

The O1 and O2 sites are then taken as the reference ones. Please, refer to Figure 2.1 for a
graphical legend of the sites.

The symmetry classification of the 12 WFs is the following, as printed at the beginning of a
Cryscor calculation:

-------------------------------------------------------------------------------

BUNCH FLOWER FLOWER PETAL | TYPE ATOM1 (G1) - ATOM2 (G2)

ABS REL |

-------------------------------------------------------------------------------

1 1 1 1 | NON BONDING O 1 ( 1) -

1 2 2 2 | NON BONDING O 3 ( 1) -

-------------------------------------------------------------------------------

2 3 1 5 | NON BONDING O 1 ( 1) -

2 3 1 6 | NON BONDING O 1 ( 1) -

2 4 2 4 | NON BONDING O 3 ( 1) -

2 4 2 8 | NON BONDING O 3 ( 1) -

-------------------------------------------------------------------------------

3 5 1 7 | NON BONDING O 1 ( 1) -

3 6 2 9 | NON BONDING O 3 ( 1) -

-------------------------------------------------------------------------------

4 7 1 3 | NON BONDING O 2 ( 1) -

-------------------------------------------------------------------------------

5 8 1 10 | NON BONDING O 2 ( 1) -

5 8 1 11 | NON BONDING O 2 ( 1) -

-------------------------------------------------------------------------------

6 9 1 12 | NON BONDING O 2 ( 1) -

-------------------------------------------------------------------------------

From the analysis of the atomic orbital populations of the 12 WFs (hereafter referred to as petals),
as reported in the output of the Properties calculation, we can recognize the character of each
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petal : 1 3 2 are the s-type orbitals, 7 12 9 are the pz-type orbitals, 5 4 10 are the px-type orbitals
and 6 8 11 are py-type orbitals of O atoms 1 2 3, respectively.

The symmetry of the system gives rise to 6 bunches centered on three different sites (the three
O atoms) for a total of 9 flowers.

There are three bunches centered on O2 (4, 5 and 6), each one made up of one single flower :
two of these flowers (7 and 9) just have one petal (the s-type and pz-type orbitals, respectively)
while the flower number 8 has two petals (the px-type and py-type orbitals). This means that the
four petals of O2 have been symmetrized according to two one-dimensional (A and B) and one
bi-dimensional (E) IRREPs of P .

Figure 2.1: Side view. Schematic representation of the symmetry properties of the SAWFs of
a three-layers slab of MgO. Small red and grey circles represent Oxygen and Magnesium atoms,
respectively. Blue circles, red arrows and green ovals represent s-type, pz-type and px,y-type
SAWFs, respectively. Petals are labelled according to the numeration reported in the Table above.

Let us comment on the symmetry classification of the petals centered on the O1 and O3 sites.
Symmetry-related flowers constitute a bunch; there are three bunches, of two flowers each, which
involve these two sites. Two bunches (1 and 3) are made up of two flowers of one petal (the two
s-type and pz-type orbitals of O1 and O3), while the last bunch (2) is made up of two flowers of
two petals (the two px-type and py-type orbitals of O1 and O3).

A schematic representation of the symmetry properties of such orbitals is reported in Figures
2.1 and 2.2. The two-petal structure of the flower 3 is clarified from Figure 2.2. When acting over
one of these petals (|p1〉 or |p2〉) with a symmetry operator R̂ of the invariant subgroup H , one
gets:

R̂|pj〉 =
2∑

i=1

[AE(R)]ji|pi〉

12



Figure 2.2: Top view. Schematic representation of the symmetry properties of the SAWFs of a
three-layers slab of MgO. The top layer (layer 1 in Figure 2.1) is reported which contains the site
O1. Conventions as in Figure 2.1

where E labels the used bi-dimensional IRREP of the subgroup and AE(R) are the corresponding
unitary matrices.
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Chapter 3

Input format and mandatory keywords

3.1 Input format

The Cryscor input consists of a series of keywords (KW) possibly followed by the respective
arguments, to be written in separate cards in free format. The following sections will describe
these KWs in detail along with their corresponding arguments (the kind of data to be inserted is
specified by three letters: I for integers, F for real-float and A for alphabetic).

Not all KWs are necessary; the ones that are mandatory are marked as KM, the others (i.e. the
optional ones) as KO. The ones marked with KT are technical keywords, used by the developers of
the code and their use is not recommended to the user. For the arguments introduced by optional
keywords, default values are provided by Cryscor, as indicated within square brackets.

The order in which the KWs have to be inserted in the input file is practically free, but some
conditions must be respected:

1. KNET must be the first keyword1;

2. MEMORY must be the second keyword, specifying the maximum available memory avail-
able on the machine running the program (in Mbytes);

3. One of the KWs aimed at the definition of excitation domains has to be inserted (DOMPUL,
DOMMOL, DOMDEF);

4. The use of the DFITTING keyword which activates the Density Fitting approximation
for the computation of the bi-electronic integrals is strongly recommended, although not
mandatory since in principle one could solve these integrals exactly.

5. END must be the last keyword of the input.

The description of the input is subdivided into sections which control different parts of the code.
Inside each section, the meaning of KWs and of the respective parameters is summarily indicated
in an input deck; then, detailed explanations, suggestions and comments are added and some input
examples are provided.

1except when DUALBAS option is active, see Section 6
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The simplest possible Cryscor input file is reported below (Table 3.1). In order to understand
which of the many available KWs are of effective interest in ordinary applications, we report in
Table 3.2 an input equivalent to the previous one, but with the explicit definition of some important
parameters, with their default values.

KNET Construction of the HF Density Matrix
12 Shrinking factor
MEMORY Memory required
2500 Value in Mbytes
DOMPUL Definition of the excitation domains
0.98 TBP parameter (see Sec. 11.1.4)
DFITTING Density Fitting input block
DIRECT Direct-space technique
PG-VTZ DF auxiliary basis set
ENDDF End Density Fitting input block
END End of Cryscor input

Table 3.1: The simplest possible Cryscor input. In this way many default values are used.

KNET Construction of the HF Density Matrix
12 Shrinking factor
MEMORY Memory required
2500 Value in Mbytes
DOMPUL Definition of the excitation domains
0.98 TBP parameter (see Sec. 11.1.4)
PAIR Definition of the hierarchy of WF-pairs
8. 12. d1 and d2 as defined in Sec. 11.1.4
DFITTING Density Fitting input block
DIRECT Direct-space technique
PG-VTZ DF auxiliary basis set
ENDDF End Density Fitting input block
MULTIPO Multipolar approximation activated
4 Multipoles up to hexadecapoles are used
TOBJ Truncation of WF and PAOs as LCAO
0.0001 0.0001 See Sec. 11.1.1
LENJONES A Lennard-Jones (LJ) extrapolation is performed
6. LJ parameter ( See Sec. 4.1.3)
END End of Cryscor input

Table 3.2: This is a Cryscor input fully equivalent to the previous one; the only difference is
that some default options have been explicitly written.
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3.2 General and mandatory keywords

The KNET keyword creates a new mesh of points in the reciprocal space where the HF Density
Matrix is evaluated; this matrix will be used in the construction of the PAOs. The suggested value
of the new shrinking factor is the same as in the Crystal calculation.

Via the MEMORY keyword the user has to declare how much memory the Cryscor exe-
cutable can use. If a low memory value is given, Cryscor will try to reduce its need for memory
by increasing the use of disk; a reasonable value is a bit less than the amount of available memory
of the machine the user is working with.

The Cryscor input file must be closed with the END keyword.

rec variable value meaning
• KNET KM The HF Density Matrix is generated by sampling the re-

ciprocal space at a number of k-points
• I IS Shrinking factor for reciprocal space net (Monkhorst net)
• MEMORY KM Memory allocation
• I IMEM Allocation in MBytes
. . .
• END KM To end the main input stream
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Chapter 4

Occupied and virtual space description

4.1 Occupied space description

The nature of Wannier functions is described in detail in Chapter 2 as well as in Chapter 11.
What we want to point out here is the importance of the concept of pairs of WFs. As a matter
of fact, the total LMP2 energy per cell can be written as a sum over LMP2 energies per WF-pair:
ELMP2 =

∑
i0j E

LMP2
i0j , where i,j run over WFs. Given that the first WF in the pair belongs to the

0-cell (0 pedix of i0 in the formula), it becomes apparent how crucial is the definition of the distance
of the second WF, i.e. the distance up to which two electrons “see” each other. The definition of
a distance criterion for WF pairs allows furthermore a hierarchical treatment of the pairs: a series
of approximated techniques for the computation of the bielectronic integrals involved is possible,
as shown in section 5.1.

In this section the KWs controlling the fundamental parameter of WF-WF pairs distance are
reported.

4.1.1 Definition of kernels

As we discuss in some detail in Section 11.1.4, a kernel is associated to each WF (i) which consists
in a set of atoms.

Kernels serve only to specify the distance Dij between two WFs, defined as the minimum dis-
tance between any two atoms belonging to the respective kernels.

Kernels are defined according to a unique scheme related to a Mulliken population (MP) anal-
ysis; only those atoms are included in the kernel of a given WF whose contribution in terms of MP
to that WF is greater than a given threshold Q0 (see equation 11.17). This threshold is usually
set to 0.1 but it can be modified via the MINPOP keyword (not advisable!). According to the
atomic or bond character of a given WF, the kernel usually contains one single atom or the two
atoms involved in the bond, respectively. The default values are strongly recommended.
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rec variable value meaning
• MINPOP KT Designs kernels, used in the classification of WF-pairs
• F MINPOP [0.1] Only those atoms are included in the kernel whose Mul-

liken population is > MINPOP (see equation 11.17)

4.1.2 Pair selection

The PAIR keyword introduces a hierarchical treatment of (i, j) WF pairs according to their dis-
tance Dij (defined as above as well as in Section 11.1.4) by means of the two parameters d1 and
d2 specified in Å in the second card. The first is always in the zero cell. Only WF-pairs for which
i belongs to the reference zero cell and Dij ≤ d2 are retained in the calculation. The considered
ones are further classified into strong (Dij = 0) weak (0 < Dij ≤ d1) and distant (d1 < Dij ≤ d2)
pairs. For most purposes, strong and weak pairs are treated in Cryscor as a unique set, that of
close-by pairs. Different approximated techniques for the computation of the bielectronic integrals
involved is possible, see section 5.1.

rec variable value meaning
• PAIR KO Partition of the occupied space
• 2F d1 d2 [8 12] Values in Å

4.1.3 Lennard-Jones extrapolation

One of the distinctive features of local correlation schemes in molecular calculations is that one
can safely ignore the contributions Eij from pairs which are “very distant” from each other, that
is, when the distance between the respective core domains exceeds a pre-fixed value d2 (typically,
d2 = 12 Å). This approximation is crucial to warrant N -scaling of computational costs, and is
justified by the fact that at large distances pair energies follow the London d−6

ij law as is present
in the well known 6-12 Lennard-Jones expression, dij being the distance between the centers of
the two distributions. However, in 3D crystals the number of pairs grows quadratically with the
distance d and the contribution to the correlation energy from all pairs at a distance dij ≥ d
falls off merely as d−3. Considerably larger cutoff distances d2 should be adopted with respect
to molecular calculations in order to achieve comparable accuracy, with a formidable impact on
computational costs. This problem is easily circumvented by taking advantage of the simple law
of inter-pair decay rate and of translational symmetry so as to extrapolate to infinity the sum of
far-off contributions. The algorithm implemented for this purpose is described in detail on page 69.

rec variable value meaning
• LENJONES KO Lennard-Jones extrapolation to infinity
• F dLJ [6] Only WFf-pairs with distance from the reference cell com-

prised between dLJ and d2 (see above) are used to calculate
Lennard-Jones coefficients
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4.1.4 Pair partitioning in adsorption problems

A case of widespread interest is that where a molecule is interacting with an adsorbing structure,
for instance a 2-d substrate or a porous 3-d system. Cryscor allows a special classification of ij
pairs in such cases, according to the subystems i and j belong to. The related KWs are as follows.
The MOLATOMS KW defines the molecular fragment. Molecular (mol) WFs are then iden-
tified as those which have at least one molecular atom in their excitation domain; all others are
environmental (env) WFs. WF-pairs can then be of three types: mol-mol, env-env, mol-env. The
MOLPAIR, ENVPAIR, MOENPAIR KWs allow different values of d1 and d2 to be assigned
to these three types, respectively.

rec variable value meaning
• MOLATOMS KT Defines the partition into “molecule” and “environment”
• I n [0] Number of atoms of the “molecule”
• nI i=1,n List of the n atoms belonging to the “molecule” (their

labelling is the same as in the CRYSTAL input).
• MOLPAIR KT Strong/weak/distant WF-pairs structure for mol-mol

pairs
• 2F d1 d2 d1 and d2 are expressed in Å. If d1 and d2 are 0, no pairs

of this type are included.
• ENVPAIR KT Strong/weak/distant WF-pairs structure for env-env

pairs
• 2F d1 d2 d1 and d2 are expressed in Å. If d1 and d2 are 0, no pairs

of this type are included.
• MOENPAIR KT Strong/weak/distant WF-pairs structure for mol-env

pairs
• 2F d1 d2 d1 and d2 are expressed in Å. If d1 and d2 are 0, no pairs

of this type are included.

Note: These KWs can be useful, but great attention has to be paid when using them. For instance,
problems can arise when the molecule is too close to the surface.

A detailed description of these KWs along with some general remarks about the modeling
of adsorption phenomena are reported in the guide Adsorption of molecules on surfaces with
Cryscor09 by D. Usvyat that can be found in the Cryscor09 website (http://www.cryscor.unito.it)
at the Supporting Material section [10].
Also note that there is a difference in the syntax of these KWs with respect to PAIR. With PAIR,
setting to 0.0 both d1 and d2 implies that only Strong WF-pairs are computed, whereas here it
means that no WF-pairs are considered of the selected type.
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4.2 Virtual space description

Once set up the description of the occupied manifold, the virtual manifold needs to be dealt with.
The localized functions which span the virtual space are the Projected Atomic Orbitals (PAO),
each obtained by projecting out of a given AO the portion that belongs to the occupied space (see
Section 11.1.2).

PAOs are labelled with the letters a,b,...; each of them is associated to (or belongs to) the atom
where the corresponding AO is centered.

4.2.1 (Excitation) Domains: General definitions

For each pair of WF, only those bi-excitations [ij] → [ab] are considered in Cryscor which
consist in promoting the two electrons from the i,j WFs to two spatially close PAOs a,b. For
this purpose, we associate to each WF i (or more precisely, to each flower of WFs, see below)
an excitation domain Di, which consists in a set of atoms. For a bi-excitations [ij] → [ab] to
be considered, both a and b must belong to one of the atoms of the union of the two
domains, Di ∪Dj.

The definition of the excitation domains is crucial to the accuracy and cost of the calculation.
For this reason, no default is automatically provided by the program and the user has to explicitly
define shape and size of the excitation domains (hereafter simply “domains”).
Several distinct schemes can be used for this purpose, which will be introduced and commented
on in the next sections:
- Mulliken population analysis of the WFs (DOMPUL), see Section 4.2.2;
- Atomic distances from the WF-centroids (DOMDEF or DOMDEF2), see Section 4.2.3;
- Molecular domains (DOMMOL) for molecular crystals only, see Section 4.2.4.
One of these KWs is mandatory, so they are marked KO(M).
Alternatively, one can use a definition based on the coefficients in the AO expansion of the WF
(DOMCOE, see Section 4.2.5) but the corresponding KW is classified as KT because its use is
more delicate.
Let us underline here that WFs belonging to the same “flower” (that is, which transform into each
other under action of the invariant site symmetry subgroup) have the same domain. Therefore,
in a sense we have to define flower domains. Furthermore, each flower domain is symmetrized
according to the corresponding site subgroup.

A general KW (MAXDOM) allows the user to restrict anyhow the number of atoms in any
excitation domain to a maximum value (MAXD).

rec variable value meaning
• MAXDOM KO Set the maximum number of atoms that can enter the

definition of an excitation domain
• F MAXD [60] Maximum number of atoms in the domains
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4.2.2 Domain definition: Mulliken Population Analysis

A definition which is chemically sensible is provided by the Boughton-Pulay (BP) criterion pre-
sented in some detail in Section 11.1.4: a sort of “Mulliken population analysis” is performed for
each WF, by looking how much of it (as a fraction of 1) is “provided” by the different atoms of
the system; these are included in the domain in order of decreasing contribution, until the domain
contains a preset fraction (TBP ) of the total WF-population. Note that atoms which are symmetry
equivalent with respect to the flower symmetry subgroup, and therefore contribute with the same
amount of population to the WF, are all included in the domain (or all excluded).

rec variable value meaning
• DOMPUL KO(M) Boughton-Pulay (BP) domains
• F TBP [0.98] Total WF-population in BP domains (see Section 11.1.4)

4.2.3 Domain definition: Stars of neighbors

A more specific tailoring of flower-domains is possible by activating the following keywords.
With the DOMDEF keyword, for each flower, stars of symmetry-equivalent atoms are included

in the domain; the total number of stars (NS) and the “identification labels” (ISTAR) of the different
stars included (in order of increasing distance from the center of the flower) have to be inserted as
arguments. Note that the distances of the neighboring atoms are defined according to the flower
centroid that is, the center of mass of the centroids of all the WFs belonging to the flower.

rec variable value meaning
insert one of the following set of cards, I or II: I

• DOMDEF KO(M) Designs flower-domains by stars of atoms
• I NF Number of flowers

for each flower F=1,NF insert the following values:
• 2I F NS Selected flower; Number of stars of atoms to be included
• NSI ISTAR=1,NS Labels of the NS stars of atoms (according to a distance

criterion with respect to the center of the flower)
or II

• DOMDEF2 KO(M) Designs flower-domains by the number of atoms
• I NF Number of flowers
• NFI NAT=1,NF Number of atoms to be included in the NF domains

When using the DOMDEF definition, be careful that the domains for flowers of different
bunches are really consistent; depending on the system and on the localization procedure, it may
happen that when a WF is not exactly centred on the atom/bond the star of neighbors is splitted
and therefore a further star(s) need to be declared in the input. See section 10.2 for an example.
When the flowers that result with a different domain size belong to the same bunch, instead,
Cryscor automatically levels the size of the domain to the largest one.
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As an alternative, by means of the DOMDEF2 keyword, the user has to indicate how many
atoms (NAT) have to be included into each flower-domain. The program will automatically select
for each flower the NAT atoms closest to the center of the flower. If needed, additional atoms are
automatically added in order to fill the outermost star of atoms. See section 10.2 for an example.

Some information about the flowers (their number, NF, their reference number, their main
features) is printed by the Properties code at the end of the localization procedure, and also at
the beginning of the Cryscor output (look at the string WF INFORMATION).

4.2.4 Domain definition: Molecular domains

When we are dealing with molecular crystals (with m molecules M1, M2, . . . , Mm in the reference
cell) it can be convenient to work with molecular domains that is to say, to include in each domain
of a WF belonging to the ith-molecule Mi the whole set of atoms of that molecule.

No arguments have to be provided.

rec variable value meaning
• DOMMOL KO(M) Molecular domains

4.2.5 Domain definition: Coefficients of WFs

The domain of the WF φi =
∑

µ cµ,iχµ is specified as comprising all atoms which contain at least
one AO χµ such that the corresponding coefficient cµ,i is larger in absolute value than a prescribed
value: by default this threshold (TDOM) is set to 0.01. One of the main disadvantages of this method
is the fact that the value of TDOM heavily affects the size of the domain, which can easily become
too large. We suggest not to use this KW, except for tests.

rec variable value meaning
• DOMCOE KT Domains by atomic coefficients
• F TDOM [0.01] Those atoms A are included in the domain of the general

WF (i) for which |cµ,i| >TDOM for at least one µ ∈ A

4.2.6 Checking the shape of domains

It may sometimes be useful to have a preliminary look at the shape of the domains without per-
forming a full calculation. This possibility is provided by the TESTDOM keyword.
The coordinates and types of the atoms included in each domain are stored on Fortran unit 17 in
xyz format for visualization, and the computation stops after the domain calculation. Moreover,
the composition of the different stars, their distance from the center of the flowers, etc., are printed
in the output file thus allowing further selection (look at the string DOMAIN INFORMATION).

Two choices are possible. Either the same number and sequence of stars are used for all the
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rec variable value meaning
• TESTDOM KO Test run for checking flower-domains

insert one of the following set of cards, I or II: I
• ALLEQ All flower-domains are equal
• I NF Number of flowers
• I NS Number of stars
• NSI ISTAR=1,NS Labels of the NS stars of atoms (according to a distance

criterium with respect to the center of the flower)
or II

• NONEQ Different flower-domains
• I NF Number of flowers

for each flower F=1,NF insert the following values:
• 2I F NS Selected flower; Number of stars of atoms to be included
• NSI ISTAR=1,NS Labels of the NS stars of atoms (according to a distance

criterion with respect to the center of the flower)

domains (keyword ALLEQ), or differences are allowed between the different domains (keyword
NONEQ). In the former case, only one variable NS (number of stars) and one vector ISTAR (labels
of the selected stars) must be defined. In the latter case, domains are generated following the same
criterion as for DOMDEF.

4.3 Truncation criteria

The TOBJ keyword allows truncating the tails of WFs and PAOs in their AO expansion: all
coefficients smaller in an absolute value than TWF and TPAO in the respective expansion are set to
zero and therefore disregarded.
LONTOL is a threshold for excluding linearly dependent virtual functions (PAOs - Projected
Atomic Orbitals) from the LON (orthonormalized PAOs) set of each given WF-pair (see Section
11.1.2). Note that too small values of LONTOL can result in catastrophic behaviour.
Two technical keywords allowing more specific truncation criteria to be assigned are COREQ and
DELPAO.

rec variable value meaning
• TOBJ KO Truncation of WFs and PAOs
• 2F TWF, TPAO [0.0001 0.0001] Threshold of the coefficients
• COREQ KT Exclude “evanescent” PAOs
• I JNORM [1] Eliminate PAOs with norm < 10−JNORM

• LONTOL KT Truncation of LON
• F tσ [0.0001] Tolerance on the LON overlap matrix
• DELPAO KT Exclude the selected PAOs from the virtual space
• I N Number of PAOs to be eliminated
• NI P=1,N PAOs to be eliminated
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4.4 Fixing of indices for manual geometry optimization

A procedure for the automatic geometry optimization at LMP2 level is not currently available in
the Cryscor code, although the implementation of the analytical gradients of the LMP2 energy
is under development and will appear in the next public version of the program.

For the time being, only discrete (i.e. by hand) geometry optimizations are possible i.e. the
user has to define by his own a discrete set of nuclear configurations (let us say Nconf configurations)
which have to be investigated separately by means of Nconf single point calculations. As a matter of
fact one of the most delicate steps of the procedure is exactly the construction of the Nconf nuclear
configurations. However, at least in some cases, this step turns out to be not so complicated: this
is the case, for instance of lattice parameters and adsorbate/surface distance optimizations.

As usual, when such a discrete optimization is performed, one has to freeze some quantities
that have to be the same in all points in order to avoid any inconsistency among them which may
lead to a not very smooth optimization curve. For instance, the FIXINDEX keyword has to
be used in Crystal calculations and the FIXWF keyword has to be used in the Properties

calculations. See the Crystal User’s Manual for details [3].
Analogously, some quantities have to be fixed also in the Cryscor calculations. In particular,

one has to freeze the WF-pairs classification according to distance (FIXPAIR keyword) and the
size and shape of the excitation domains (FIXDOM keyword) . These two keywords have to be
used in the calculation performed on the most dense geometry (i.e. with the smallest lattice
parameter or adsorbate/surface distance, for instance) and generate two corresponding external
units: 133 and 131, respectively.

For all the other Nconf−1 single point calculations, the PAIRREA and DOMREA keywords
have to be inserted in the Cryscor input and the two units 133 and 131 obtained with the
reference geometry have to be provided. Note: in some cases, it can be also convenient to fix the
number of PAOs by means of the FIXNPAOS and NPAOSREA technical keywords.

rec variable value meaning
• FIXPAIR KO Saving the information on the number and type of WF-

pairs in the external unit 133
• FIXDOM KO Saving the information on the domains in the external unit

131
• FIXNPAOS KT Saving the number of PAOs in the external unit 132

• PAIRREA KO Reading the information on the number and type of the
WF-pairs from the external unit 133

• DOMREA KO Reading the information on the domains from the external
unit 131

• NPAOSREA KT Reading the number of PAOs from the external unit 132

• DOMONLY KO Does not perform the actual LMP2 calculation but obtains
the information on pairs, domains and PAOs and stops
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Chapter 5

LMP2 integrals and equations

5.1 Two-electron integrals

In this section we discuss one of the most essential issues of the LMP2 method, the evaluation of
the Electron Repulsion Integrals (ERIs) ( ia | jb ), which enter the definition of both the energy
and amplitude (Section 11.2.2) equations. The techniques employed in Cryscor for dealing with
this problem differ according to the distance Dij between the two WFs, i and j.

For close-by pairs (Dij ≤ d1) the exact, i.e. analytic, evaluation of the ERIs is the default option.
Some technical KWs may be specified, as explained below. Note however that this technique is as
a rule terribly time-consuming and should only be considered for calibration purposes.

The strongly recommended option for close-by pairs is a Density Fitting Periodic technique
(DFP), as described in Section 11.2.4. The corresponding input is commented on in details below
(Section 5.1.3). For distant pairs (d1 < Dij ≤ d2), the multipolar (MP) approximation provides a
very efficient and accurate solution of the problem (see Section 11.2.4).
The DFP and MP approximations are complementary techniques, in the sense that the former
is particularly accurate for treating close-by pairs, whereas the latter can be safely applied only
when the two WF-PAO product distributions are not overlapping, which requires the respective
WFs to be distant from each other.

5.1.1 Exact two-electron integrals

rec variable value meaning
• SCHWARZ KT Schwarz screening for 2-el integrals is activated
• 3I TS1 TS2 TS3 [10 10 10] Schwarz tolerances (10−TS)
• DSCREEN KT Pre-screening on the coefficients for 2-el integrals
• 3I TD1 TD2 TD3 [4 4 4] Density screening tolerances (10−TD)
• ASYMDOM KT Only vertical excitations are considered
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5.1.2 Multipolar Expansion

ERIs associated to distant pairs are evaluated via the so-called MP approximation: that is, the
WF-PAO product distribution associated to either of the two electrons is described by a set of
multipoles up to a maximum order ℓ, set by default to 4 and modifiable via the MULTIPO
keyword. For further details, see Section 11.2.4.

rec variable value meaning
• MULTIPO KO Multipole calculation of 2-electron integrals for

d1 ≤ d ≤ d2

• I NMULTIP [4] Maximum multipole moment
• MPREAD KT Read multipoles from fortran unit 97

5.1.3 Density Fitting

For the DF theory in Cryscor, see references [11, 12, 13]. The presence in the Cryscor input file
of the DFITTING keyword, specifies that 2-electron integrals of close-by WF-pairs are estimated
via the DF approximated technique and not by means of an exact computation.

Following DFITTING, a card specifying either DIRECT or KSPACE must be present.
This allows to choose between the two different DF schemes present in the code. The first scheme
is a fitting performed purely in the direct space, in a way formally similar to the molecular density
fitting formulations. The second is a mixed scheme allowing some fitting functions to be treated
with reciprocal space techniques.

In many cases the DIRECT scheme, with an adequate fitting basis set and default options, is
sufficiently accurate and efficient.

Figure 5.1: Periodic table of elements. Red elements are those whose corresponding fitting basis
set is inserted in the Cryscor library; for them, at least PG-VTZ and PG-V5Z-quality basis sets
are guaranteed.

If KSPACE is chosen, a card must follow which specifies the shrinking factors IS123A and
IS123B of the Monkhorst net used for the required Fourier Transforms (FT). The values adopted
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for IS123A and IS123B have effects both on accuracy and computational times. Suggested values
are: for IS123A the same as employed in Crystal HF calculation, for IS123B an increased value
with respect to IS123A (12, for instance if 8 is the HF shrinking factor). In this way, it is implicit
that the same shrinking factor is used for the different directions of the reciprocal lattice. If one
wants different values to be used, just set IS123A and/or IS123B to zero, and introduce 1 or 2
cards specifying the values IS1A IS2A IS3A and/or IS1B IS2B IS3B. The MIXEXP optional
keyword defines the partition between direct and reciprocal space treatment.

General structure of the DF input block
rec variable value meaning
• DFITTING KO DF for the evaluation of 2-electron integrals for

Strong pairs
• DIRECT or KSPACE KO Selects the DF scheme

If KSPACE then insert
• 2I IS123A IS123B Shrinking factors of k net in reciprocal space
• MIXEXP KO Sets minimum exponent of functions in recip-

rocal space. All functions with lower exponent
are moved in the direct space part

• F EXP [1.] Exponent value
with either KSPACE or DIRECT insert

• PRINTBAS KO Prints in the output the fitting basis set
• USRBASIS or LABEL KO The fitting basis set is chosen; for instance

LABEL could be PG-VTZ.
if USRBASIS then define the DF basis set for each type of atom

• 2I AN NFF Atomic number; number of fitting functions
for each fitting function (F=1,NFF)

• 3I LAT NG T LAT is the shell type, NG is the number of prim-
itive functions (see the Crystal Manual, Sec-
tion 1.2 [3]); T=0 if the fitting function is a GTF,
T=1 if the fitting function is a PTF

for each primitive function (P=1,NG)
• 2F EXP COEF Exponent and coefficient of primitive functions

• 2I 99 0 To end the sequence of atoms
Optional keywords

• · · ·
• SEE BELOW

• · · ·
• ENDDF To end the DF input block

Then the fitting basis set must be chosen. This can be of two types: either comprising only
Gaussian Type Orbitals (GTO), or a few GTOs plus Poisson Type Orbitals (PTO). It is possible,
and recommended when possible, to use one of the fitting basis sets available in the Cryscor
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internal database (which are the molecular fitting sets used in Molpro 1, or the same but slightly
modified in some cases 2): basis sets of the database can be defined from input through a label
composed of two parts; the first can be either G or PG depending on the character of the functions
used (pure GTOs or mixed, respectively); the second part defines the quality of the set. Mixed
sets include a whole set of PTOs plus one GTO per angular momentum, that is 1p 1d 1f (1g).

The available types of basis sets are presently:

• G-VDZ, G-VTZ, G-VQZ, G-V5Z

• PG-VDZ, PG-VTZ, PG-VQZ, PG-V5Z, PG-AVTZ, PG-AV5Z

If DIRECT is used, both G or PG sets can be adopted; if KSPACE is chosen, only PG sets can
be adopted.
For the time being, these basis sets have been inserted into the database for light elements only
(those reported in red in Figure 5.1.3) but work is still in progress.

As an alternative to predefined fitting basis, user-specified basis sets can be explicitly defined
in the input by putting the USRBASIS flag instead of the basis set definition label, followed by the
basis set in a suitable format (see the following table).

After the basis set information, further KWs for the Density Fitting can be optionally speci-
fied (see the “DF Optional Keywords” table). The default tolerances for the Schwarz selection of
non negligible integrals are [8 8 16]. To change these values, the DFSCHW keyword must be
activated. Note that when DFITTING is active, the tolerances defined by the KW SCHWARZ
are ignored. The most useful command is probably the keyword NMINCENT , which sets the
minimum size of local fit domains, which can be increased to improve the accuracy of the Density
Fitting approximation, or reduced to reduce the computational weight of the calculation. These lo-
cal fit-domains are defined by the program according to a shell population criterion, and symmetry
adapted, so the actual size of an individual domain can be larger than defined. The default value
of this parameter is different in the two fitting schemes: 12 for DIRECT and 6 for KSPACE.

Finally, the user can ask the program to print in the output file the adopted fitting basis set
by means of the PRINTBAS keyword.

The DFITTING environment is closed by the ENDDF key. The simplest DF input blocks
will then look like:

DFITTING DFITTING

DIRECT KSPACE

PG-VTZ 8 12

ENDDF PG-VTZ

ENDDF

1www.molpro.net
2for instance, for some elements, when PTF sets were not available, these have been obtained by converting to

PTFs the corresponding GTF set, and adding some suitable GTO functions
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DF Optional keywords
rec variable value meaning
• DFSCHW KO DF integrals Schwarz screening
• 3I TS1 TS2 TS3 [8 8 16] DF Schwarz tolerances (10−TS)
• NCONSTR KT Multipole constraints for the local part of the fitting
• I NC [0] Number of constraints
• THRSHEIG KT Sets threshold for removal of redundancies in both

schemes of fitting
• F THR [10−4] Threshold

if DIRECT then you could insert
• METHDIR KT Sets domains for the direct space fitting set
• A LABEL [POPCENT] Can be either RADIUS, DENSITY, POPCENT or ONECENT
• NMINCENT KO Sets the minimum number of centers for either

method DENSITY or POPCENT
• I MNCT [12] Number of centers

if KSPACE then you could insert
• METHDIR KT Sets domains for the direct space fitting set
• A LABEL [POPCENT] Can be either RADIUS, DENSITY, POPCENT or ONECENT
• METHREC KT Sets how the fitting domains are defined for the direct

space basis set
• A LABEL [RADIUS] Can be either RADIUS, DENSITY, POPCENT or ONECENT
• NMINCENT KO Sets the minimum number of centers for either

method DENSITY or POPCENT
• I MNCT [6] Number of centers
• FITRAD KO Sets the maximum radius for fitting functions in re-

ciprocal space (RADIUS method)
• I DISTFF [10.] Radius in Å
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5.2 MP2 Equations

In order to better understand the meaning of the keywords commented on in this section, the
reader is addressed to Section 11.2.2 of this Manual.

rec variable value meaning
• CONTOL KO Convergence criteria for the LMP2-SCF
• I, F MAXC DIFF [10 10−6] Maximum number of cycles; convergence is reached

when the energy difference between two subsequent
cycles is lower than DIFF

• TOLEQPRS KT Prescreening in the evaluation of the β terms in the
LMP2 equations (see Section 11.2.2)

• F TEQ1 [10−8] First threshold for prescreening
• TOLEAMPS KT Prescreening for evaluating the updates in the LMP2

equations (see Section 11.2.2)
• F TEQ2 [10−8] Second threshold for prescreening

5.3 Restart keywords

INTREA and AMPREA are two restart KWs for the recovery of information from previous
calculations. Suppose you have performed a (d1, d2)=(4.,8.) calculation (ref), which has generated
data on the external units 84 and 151.
In a subsequent (4.,12.) or (6.,12.) calculation performed for the rest with the same parameters,
you may want to extend the range of distant pairs (by increasing d2), and/or to extend the range
of close-by pairs (by increasing d1) without recalculating the NPAIR integrals corresponding to
the pairs classified as ‘close-by’ in ref. INTREA permits those integrals to be recovered from unit
84.
Suppose instead that you want to extract information on the MP2 density matrix corresponding
to ref, without repeating the calculation. This can be done by inserting in the input of ref, both
INTREA (in this case NPAIR is the total number of classified WF pairs) and AMPREA (which
recovers all MP2 amplitudes from unit 151), plus the DENSMAT card (see Section 7).

rec variable value meaning
• INTREA KO Integral recovery from external unit 84
• I NPAIR Number of Flower-Flower pairs whose integrals are to be

recovered
• AMPREA KO Amplitudes recovery from external unit 151
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Chapter 6

Dual Basis Set

In the study of extended systems, the use of diffuse basis functions is limited by the onsetting
of linear dependencies in the overlap matrix. On the other hand, a correct description of the
virtual manifold, often achieved with extended basis sets, plays a crucial role in electron correlation
calculations. To overcome this problem a dual basis set option has been implemented, in which
two different basis set are used; the first one, referred to as ref, is used for the calculation of the
HF reference solution (that is to generate the WFs); the second one, including as many diffuse
functions as needed, referred to as mod, is used in the correlation calculation (to generate PAOs
and to solve the MP2 equations). The procedure is the following:

1. A Crystal+Properties calculation with the ref basis set has to be performed in order to
obtain the reference WFs (fortran units 9 and 80);

2. A Crystal calculation (that reads the unit 9 of the previous calculation, renamed as unit
20) with the mod basis set and with the GUESDUAL keyword [3] frozen at the zero cycle
generates the quantities of interest in the new basis set (fortran units 9 and 78);

3. A Cryscor calculation with the DUALBAS keyword has to be performed. It is mandatory
to put the DUALBAS keyword in Cryscor before the KNET one.

In order to run a job with this option, the following fortran units have to be provided:
Fortran unit 80 of the ref calculation;
Fortran units 9 and 78 (renamed dualbas.info) of the mod calculation.

rec variable value meaning
• DUALBAS KO Activates the dual basis set option
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Chapter 7

LMP2 correction to the HF one-electron
Density Matrix

The DENSMAT keyword activates the MP2 correction to the HF Density Matrix calculated
owing to a Lagrangian approach [14]. At present, orbital relaxation effects are not included.
The MP2-corrected valence part of the Density Matrix (DM) is saved on the external and unfor-
matted fortran unit 63.

rec variable value meaning
• DENSMAT KO LMP2 Lagrangian orbital-unrelaxed Density Matrix
• TOLDENS KO Tolerance for evaluating the Density Matrix via the

DENSMAT keyword
• F TOL [10−8] Value of the tolerance

In order to compute any MP2-corrected property which depends on the DM (electron charge
and momentum densities, Mulliken populations, structure factors, directional Compton profiles,
autocorrelation function, etc.), one has to provide unit 63 to the Properties code.
By default the Properties program adopts the HF Density Matrix; but if one inserts the
PMP2 keyword followed by a number, 0 or 1, the calculated properties are referred to the whole
(HF+MP2) or to the correlation only (MP2) Density Matrix, respectively. The latter option is
recommended for calculating the correlation contribution to electron charge density or to Mulliken
populations.
See the Properties Manual for further details on the usage of the PMP2 keyword [3]. Let us
comment, for the sake of clarity, the following Properties input:
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NEWK Must be inserted in the first record
12 12 12 New shrinking factor
1 0 Fermi energy must be computed
PPAN (HF) Mulliken’s populations are computed
XFAC (HF) Structure factors are computed
1 (how many factors)
2 0 0 (which ones)
PMP2 Reads the MP2 correction to the Density Matrix
0 The HF+MP2 Density Matrix will be used
PPAN (HF+MP2) Mulliken’s populations are computed
XFAC (HF+MP2) Structure factors are computed
1 (how many factors)
2 0 0 (which ones)
END End of the input

Table 7.1: A simple example of Properties input where the PMP2 keyword is used.
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Chapter 8

Printing and Plotting

It may be useful to obtain additional printed or graphical information on some quantities of interest.
Here are some suggestions for the use of the printing option activated by the PRINPLOT keyword.

The first argument of this keyword is the general level of printing IPRT. There are two main
optional levels of printing: the zeroth level (0) that activates the printing of basic information (the
default choice), and the first level (1) which introduces further information for experienced users.
Printing levels beyond 1 are not formatted and their use is discouraged for non-developing users.
Detailed information on some key-quantities of the LMP2 method can be collected if one or more
of the following KWs (general name ITEM) is activated after the IPRT card (and independently of
the value of IPRT): WF FWF PAO SPAO FPAO LON SLON FLON as illustrated below. An ITEM=END

card must be inserted to end the printing section of the input, either immediately after the IPRT

card, or after a group of the other ITEM cards.
These ITEM cards stand for:

• WF The matrix of the WF coefficients in the AO basis (cW [µg; i0]);

• FWF The Fock matrix in the basis of the WFs (FW [ig; j0]);

• PAO The matrix of the PAO coefficients in the AO basis (cP [µg; a0]);

• SPAO The overlap matrix in the basis of the PAOs (SP [ag; b0]);

• FPAO The Fock matrix in the basis of PAOs (F P [ag; b0]);

• LON The matrix of the LON coefficients in the AO basis for each WF-pair (cL(ij)[µg; a′]);

• SLON The overlap matrix in the basis of LONs, for each WF-pair (SL
(ij)[a

′; b′]);

• FLON The Fock matrix in the basis of LONs, for each WF-pair (FL
(ij)[a

′; b′]).

Note that the first seven matrices (whose first index is associated to a lattice vector g while
the second refers to the zero cell), are printed in a sequence for the different selected vectors:
g = g1, g2, . . . , gNG. For instance, first {cW [µg = g1; i0]} (for all µ’s in the rows, all i’s in the
columns), next {cW [µg = g2; i0]}, etc.
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rec variable value meaning
• PRINPLOT KO Defines printing options
• I IPRT 0 General level of printing
• A ITEM KO ITEM can be one of the following keywords: END

WF FWF PAO SPAO FPAO LON SLON
FLON

if ITEM = FWF, SPAO, FPAO, SLON, FLON, then insert
• I NG Number of g-vectors (crystal cells) to be considered

for printing
• NGI NG1 NG2 · · · Labels of the selected crystal cells

if ITEM = WF, PAO, LON, then insert
• 2I NG NS Number of g-vectors (crystal cells) to be considered

for printing and number of stars of g-vectors to be
considered for plotting

• NGI NG1 NG2 · · · Labels of the selected crystal cells
if ITEM = END, then end print section

if NS6= 0 then insert MAPNET cards (see the Crystal User’s Manual [3])
• I NPY Number of points on the B-A segment.

enter a keyword to choose the type of coordinates
• COORDINA KO
• 3F XA,YA,ZA Cartesian coordinates of point A
• 3F XB,YB,ZB Cartesian coordinates of point B
• 3F XC,YC,ZC Cartesian coordinates of point C

or
• ATOMS KO Defines printing options
• I IA Label of the atom at point A

3I AL,AM,AN Indices of the cell where the atom is located
• I IB Label of the atom at point B

3I BL,BM,BN Indices of the cell where the atom is located
• I IC Label of the atom at point C

3I CL,CM,CN Indices of the cell where the atom is located
• END To end the MAPNET input block

Some of these quantities (WFs, PAOs and LONs) can also be sampled in a grid of points in order
to be plotted in a 2D representation; in this case, data are saved on unit 25 and can be processed
via the Crgraph graphical package provided as an external utility with the Crystal program.
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8.1 Timing information

If the DTIME keyword is inserted in the input, detailed information about the time needed to
perform the different tasks of the calculation is printed in output.

rec variable value meaning
• DTIME KO Prints information about timings
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Chapter 9

Possible sources of errors

In this section we report a brief list of possible sources of errors or mistakes that can cause wrong
results:

• The quality of the MP2 correction to the HF energy and density matrix is affected by the
quality of the reference HF solution. In particular, some truncations introduced at HF
level and which have only small effects on the HF energy, could lead to a significant loss of
correlation energy at MP2 level; this is the case, for some systems at least, of the truncation
thresholds which enter the calculations of the HF two-electron integrals (governed by the
TOLINTEG keyword); please refer to the TOLMP2 keyword of Crystal in order to
improve the quality of such thresholds;

• The quality of Wannier Functions is fundamental for the stability of the LMP2 procedure.
In particular symmetry properties of WFs must be fulfilled with a good numerical precision.
Quality of WFs can be improved e.g. by increasing the k-points mesh in the localization
procedure. For further details refer to the Properties documentation.

• As the quality of WFs is important, so is the quality of PAOs. In particular when the dual
basis set technique is used, it is important that the k-mesh for the PAO generation (KNET
keyword) is sufficient (the energy of the singles is specially sensitive to that). If you have
any doubt about the correctness of the results try increasing this parameter.

• A delicate parameter is d1 which controls the partition of the occupied space and in particular
sets the distance beyond which the multipolar expansion is used in the computation of the
integrals; its value can be modified using the PAIR keyword. Low values of d1 (i.e. d1 lower
than 6) may lead to inaccuracies in the computed correlation energy.

• When a binding energy ∆E = E(A+B)−[E(A)+E(B)] has to be computed, attention must
be paid on the consistency of the size and shape of the excitation domains in the different
calculations involved;

• The same attention as that of the previous item has to be paid when evaluating the BSSE
(Basis Set Superposition Error) through the counterpoise correction.

37



• Some care should be taken when using the MOLPAIR-ENVPAIR-MOENPAIR set of
keywords for describing physisorption phenomena: when the influence of one subsystem on
the electronic cloud of the other is significant, i.e. when the molecule and substrate are close
to each other, this approximation can lead to an overestimation of the interaction energy.
One should then check the convergence of the energy with an increasing number of intra-pairs
included, so for instance including the intra-molecule pairs and the strong pairs in the slab.
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Chapter 10

What the output looks like

In this Chapter we will present and discuss the main features of the Cryscor output by means of
some explicit examples. There are two main levels of printing among which the user can choose:
the zeroth level (0) that activates the printing of basic information (which constitutes the default
choice and is used in the example below) and the first level (1) which introduces further information
for experienced users. The level of printing can be modified via the keyword PRINPLOT (see
Section 8). Printing levels over 1 are not formatted and their use is discouraged for non-developing
users.

10.1 The simple case of the LiH crystal

KNET Construction of the HF Density Matrix (DM)
8 New shrinking factor
MEMORY Memory required
4000 Value in Mbytes
DFITTING Density Fitting input block
DIRECT Direct-space technique
PG-VTZ DF auxiliary basis set
ENDDF End Density Fitting input block
DOMDEF Definition of the excitation domains
1 There is only one flower
1 2 For the first flower, two stars of neighbors are included
1 2 The stars are the first and the second
DENSMAT The MP2 correction to the HF DM is activated
END End of Cryscor input

Table 10.1: The Cryscor input used for the calculation we are commenting on.

In this Section we will comment on the output of an MP2 calculation for the Lithium hydride
(LiH) crystal. LiH is an ionic crystal of cubic symmetry (rocksalt structure, space group Fm3m),
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with only one lithium and one hydrogen per cell. The basis set adopted for Li comprises two s
and one p shells while for H, three s and one p shells. This is a very simple system which allows
us to comment on specific aspects of the output.

The Cryscor input file here adopted is the one reported in Table 10.1; it is an irreducible
input apart from the DENSMAT keyword which activates the computation of the MP2 correction
to the HF Density Matrix. The excitation domains are defined explicitly in input by means of the
DOMDEF keyword.

10.1.1 The Header and the recovery of the information from Crystal

*******************************************************************************

* *

* CRYSCOR09 *

* *

* An ab initio program for electron correlation in solids *

* *

* www.cryscor.unito.it *

* *

* Main Authors *

* *

* C. PISANI(1), S. CASASSA(1), L. MASCHIO(1) *

* M. SCHUETZ(2), D. USVYAT(2) *

* *

* (1) THEORETICAL CHEMISTRY GROUP *

* UNIVERSITA’ DI TORINO - TORINO (ITALY) *

* (2) INSTITUTE FOR PHYSICAL AND THEORETICAL CHEMISTRY *

* UNIVERSITAT REGENSBURG - REGENSBURG (GERMANY) *

* *

* WHEN PUBLISHING ANY RESULT OBTAINED WITH CRYSCOR09 *

* THE PROGRAM HAS TO BE CITED IN THE PROPER WAY: *

* *

* - C. Pisani, L. Maschio, S. Casassa, M. Halo, M. Schuetz *

* and D. Usvyat, J. Comput. Chem., 29, 2113 (2008) *

* *

* - A. Erba and M. Halo, CRYSCOR09 User’s Manual *

* Universit degli Studi di Torino, Torino - Italy (2009) *

* www.cryscor.unito.it *

* *

* THE DENSITY FITTING MODULE OF CRYSCOR09 IS BASED UPON LICENCE *

* ON THE CORRESPONDING MODULE OF MOLPRO (www.molpro.net) *

* F.R.Manby, P.J.Knowles, A.W.Lloyd, J.Chem.Phys. 115,9144(2001) *

* *

*******************************************************************************
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The first portion of the Cryscor output is the header where some basic information about the
authors of the code are reported.

*******************************************************************************

* *

* SUMMARY OF THE COMPUTATIONAL SETUP OF THE HF REFERENCE CALCULATION *

* *

*******************************************************************************

*******************************************************************************

LiH

CRYSTAL - PROPERTIES - TYPE OF CALCULATION : RESTRICTED CLOSED SHELL

*******************************************************************************

HARTREE-FOCK HAMILTONIAN

DIRECT LATTICE VECTOR COMPONENTS (BOHR)

0.00000 3.66229 3.66229

3.66229 0.00000 3.66229

3.66229 3.66229 0.00000

LATTICE PARAMETERS (BOHR AND DEGREES) - PRIMITIVE CELL

A B C ALPHA BETA GAMMA VOLUME

5.17926 5.17926 5.17926 60.0000 60.0000 60.0000 98.23990

*******************************************************************************

N. OF ATOMS PER CELL 2 COULOMB OVERLAP TOL (T1) 10** -6

NUMBER OF SHELLS 7 COULOMB PENETRATION TOL (T2) 10** -6

NUMBER OF AO 11 EXCHANGE OVERLAP TOL (T3) 10** -6

N. OF ELECTRONS PER CELL 4 EXCHANGE PSEUDO OVP (F(G)) (T4) 10** -6

CORE ELECTRONS PER CELL 2 EXCHANGE PSEUDO OVP (P(G)) (T5) 10**-12

N. OF SYMMETRY OPERATORS 48 POLE ORDER IN MONO ZONE 4

*******************************************************************************

ATOM N.AT. SHELL X(AU) Y(AU) Z(AU) EXAD N.ELECT.

*******************************************************************************

1 1 H 4 0.000 0.000 0.000 3.000E-01 1.983

2 3 LI 3 3.662 3.662 3.662 6.000E-01 2.017

*******************************************************************************

DE(K) 0.000E+00 ENERGY LEVEL SHIFTING 0.00000

TOTAL ENERGY -8.0592434161786E+00 CONV. ON ENERGY 3.742E-08

KIN. ENERGY 8.1334688248138E+00 VIR. COEFF. 1.00458388E+00

N. OF SCF CYCLES 8 FERMI ENERGY -0.229E+00

WEIGHT OF F(I) IN F(I+1) 30

SHRINK. FACT.(MONKH.) 8 8 8 SHRINKING FACTOR(GILAT NET) 8

NUMBER OF K POINTS IN THE IBZ 29 CELL VOLUME (A.U.) 98.23990

*******************************************************************************
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The second part reports a summary of the main computational parameters used and of the main
structural features of the reference HF calculation, performed with Crystal.

10.1.2 The recovery of the information from Properties

After the recovery of the information coming from the HF calculation (read from the external
fortran unit 9), the Cryscor program reads from the external unit 80 the information concerning
the localization and symmetrization of the crystalline orbitals into Wannier functions (WF). The
symmetry properties of such functions is reported in the output:

*******************************************************************************

* *

* WANNIER FUNCTIONS (WF) INFORMATION FROM THE PROPERTIES CALCULATION *

* *

*******************************************************************************

-------------------------------------------------------------------------------

BUNCH FLOWER FLOWER PETAL | TYPE ATOM1 (G1) - ATOM2 (G2)

ABS REL |

-------------------------------------------------------------------------------

1 1 1 1 | NON BONDING H 1 ( 1) -

-------------------------------------------------------------------------------

The case of LiH is very simple in the present respect, since it has only two valence electrons per
cell, hence only one WF (of atomic type) centered in the hydrogen atom, essentially of s character.

10.1.3 The computational setup of the MP2 calculation

In this section of the output, the number of AOs and WFs per unit cell is first reported, followed
by a list of the most important Cryscor parameters adopted in the calculation; some of them
may be explicitly defined in input while others assume their default values.

The maximum number of cycles for the solving procedure of the MP2 equations and the corre-
sponding converge threshold are reported (they can be modified via the CONTOL keyword, see
Section 5.2). The meaning of the pair distances (that can be modified via the dedicated PAIR
keyword) will be discussed in depth below. The truncation thresholds for the expansion of WFs
and PAOs in the AOs basis, are set to 10−4 and can be modified via the TOBJ keyword. The
adjoined GTF exponent used in the recalculation of the one-electron Density Matrix for generating
the PAOs is set to 0.04, which corresponds to high accuracy. The Density Fitting technique is
used in the calculation of some two-electron integrals; excitation domains are explicitly defined in
input and the global level of printing is 0 (default). Other parameters are more technical (see the
previous Chapter for more details).
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*******************************************************************************

* *

* ---> THE MP2 CALCULATION STARTS HERE <--- *

* (COMPUTATIONAL SETUP) *

* *

*******************************************************************************

NUMBER OF AOs: 11

NUMBER OF WFs: 1

INPUT PARAMETERS:

MAXIMUM NUMBER OF CYCLES: 30

CONVERGENCE ON ENERGY: 1.0000E-06

PAIR DISTANCE: WEAK 8.0000E+00

DISTANT 1.2000E+01

PAOs-COEFFICIENTS TOLERANCE: 1.0000E-04

WFs-COEFFICIENTS TOLERANCE: 1.0000E-04

ADJOINT GTF EXPONENT FOR P TRUNCATION 4.0000E-02

SCHWARZ TOL STRONG WEAK DISTANT: 10- 8 8 16

DSCREEN TOL STRONG WEAK DISTANT: 10- 4 4 4

MONKHORST SHRINKING FACTORS: 0 0 0

LEVEL OF PRINTING: 0

DENSITY FITTING

MULTIPOLAR CORRECTION STARTS AT (A): 8.0000E+00

EXCLUDE PAOs WITH NORM LESS THAN:10- 6

DOMAINS DEFINED BY INPUT

10.1.4 The operating region

Some quantities which define the operating region of the calculation are then printed. The number
of unit cells defining the active region of the crystal is reported along with the number of k-points
used in the reciprocal space in order to generate the PAOs.

*******************************************************************************

* *

* OPERATING REGION *

* *

*******************************************************************************
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---> 19237 CRYSTAL CELLS ( 204 STARS OF G-VECTORS )

---> MAX DENSITY FITTING RANGE : 600

---> PAOs ARE GENERATED IN THE RECIPROCAL SPACE

---> 512 K-POINTS IN RECIPROCAL SPACE

---> THE LARGEST WF-PAO OVERLAP IS: 0.38581383E-09

10.1.5 The excitations domains

Information on the size and shape of WF excitation domains is next reported. Since all petals
in the same flower have the same domain (because each domain is symmetrized according to the
invariant subgroup of symmetry of the corresponding flower) this information only concerns the
different flowers.

*******************************************************************************

* *

* FLOWERS EXCITATION DOMAINS *

* *

*******************************************************************************

DEFINED AS THE SET OF PAOs BELONGING TO THE FOLLOWING SET OF ATOMS:

FLOWER N. 1

ATOM 1 H - N. OF G: 1 ---> 1

ATOM 2 LI - N. OF G: 6 ---> 12 8 2 40 30 26

Here, the DOMDEF keyword has been used. From the input shown in Table 10.1, we see
that just one domain is defined: indeed, there is just one flower in the system to which two stars
of neighbors are assigned; they are specified in the following input card: star 1, which contains one
H atom and star 2, which contains six Li atoms, for a total of 7 atoms. The list of the atoms of
either type in the domain, and the crystal cell to which they belong are reported in the output.

10.1.6 The kernel domains

A minimal domain [i0]0 can be associated to each reference WF φi0(r) and then transferred to
the whole set {φi(r)} of its periodic images in the crystal. This minimal domain is defined as
the set of any atom of the system contributing to the total Mulliken electronic population of the
WF φi0(r) for more than a given threshold Q0 (see Section 11.1.4). If Q0 is reasonably chosen
then the minimal domain represents a minimal chemical description of the corresponding WF.
If the selected WF is a bond one then the corresponding minimal domain will be the union of
the two atoms belonging to the bond; otherwise if the selected WF is an atomic one, then the
corresponding minimal domain will contain only one atom (the one in which the WF is centred).

Minimal domains define the metric of WF-pairs.

44



*******************************************************************************

* *

* FLOWERS KERNEL DOMAINS *

* *

*******************************************************************************

DEFINED AS THE SET OF PAOs BELONGING TO THE FOLLOWING SET OF ATOMS:

FLOWER N. 1

ATOM 1 H - N. OF G: 1 ---> 1

In the case of LiH, since the only flower is of atomic type, its minimal domain is just made up of
one H atom.

10.1.7 The pairs partition (distance)

As previously said, the PAIR keyword serves to classify WF-pairs according to the distance
between the corresponding minimal domains. Two distances d1 and d2 are defined (the default
values being 8 and 12 Å, respectively).

This classification concerns in fact pairs of flowers, since the domains of all WFs in the same
flower coincide. Furthermore, only the symmetry irreducible pairs are classified since symmetry is
fully exploited.

*******************************************************************************

* *

* PAIRS CLASSIFICATION (DISTANCE) *

* *

*******************************************************************************

NUMBER OF STRONG PAIRS: 1

NUMBER OF WEAK PAIRS: 8

NUMBER OF DISTANT PAIRS: 15

NUMBER OF IRREDUCIBLE PAIRS CLASSIFIED: 24

There is just one Strong pair (d = 0) while there are 8 Weak pairs (0 < d ≤ d1) and 15 Distant
pairs (d1 < d ≤ d2), for a total of 24 irreducible pairs.

Pairs separated by more than d2 are considered Very distant, and are neglected in the local
approach.

It is important to state that the classification of the pairs according to the distance is strictly
related to the way the respective integrals are treated. Concerning this point, it can be observed
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that Strong and Weak pairs are always treated in the same approximation, so that this distinction
is purely formal for the moment being. In the present case, they are calculated with the Density
Fitting technique.

On the contrary, the integrals of Distant pairs are evaluated via a multipolar approximation.

10.1.8 Two-electrons Integrals

The two-electron integrals which correspond to Strong and Weak WF-pairs are treated via the
Density Fitting approximation. Information on the time required for such part of the calculation
is reported:

*******************************************************************************

* *

* INTEGRALS CALCULATION VIA THE DENSITY FITTING APPROXIMATION *

* *

*******************************************************************************

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT DFITINIT TELAPSE 21.77 TCPU 20.14

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT MP2INTEG TELAPSE 329.99 TCPU 325.58

The integrals corresponding to Distant WF-pairs are then evaluated via the so-called Multipolar
approximation: multipoles (up to hexadecapoles by default) are first constructed and then integrals
are computed.

*******************************************************************************

* *

* MULTIPOLAR INTEGRALS *

* *

*******************************************************************************

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT MPOLESCALC TELAPSE 19.58 TCPU 19.57

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT MPOLESINTE TELAPSE 19.69 TCPU 19.69
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10.1.9 LMP2 equations

The LMP2 equations are then solved through a self consistent procedure. At each cycle, the total
correlation energy (ECORR) of the system is printed; this energy does not include the contribution
of the residues (DELTA) that must vanish at convergence.

*******************************************************************************

* *

* ITERATIVE SOLVER OF THE LMP2 EQUATIONS *

* *

*******************************************************************************

CYCLE 1 ECORR -0.02810152 DELTA -0.00007950

CYCLE 2 ECORR -0.02815544 DELTA -0.00005392

CYCLE 3 ECORR -0.02815541 DELTA 0.00000089

The total absolute value of the residues is also given at each cycle. When the residues become
smaller than the convergence threshold set by the CONTOL keyword (10−6 in this case) the
procedure stops and convergence is reached:

*******************************************************************************

* *

* MP2 CONVERGENCE REACHED ---> E(MP2): -0.02815541 *

* *

*******************************************************************************

This is the final MP2 correlation energy of the crystalline system per cell.

10.1.10 The Grimme correction

Grimme has recently proposed [Grimme, J. Chem. Phys., 118, 9095 (2003)] a semi-empirical
scaling of the two spin components of singlet and triplet. This strategy has been implemented in
the Cryscor code. The total correlation energy obtained within such a scheme, along with its
two components, is then reported in the output.

*******************************************************************************

* *

* E(GRIMME): -0.03101104 *

* GRIMME COMPONENTS: *

* ---> TRIPLET: -0.00320244 *

* ---> SINGLET: -0.02495297 *

* *

*******************************************************************************
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10.1.11 Singly excited configurations

According to the Brillouin theorem, singly excited configurations should not contribute in any
extent to the total correlation energy of a system. This condition should be verified when calcu-
lations are performed using the same basis set for the HF reference calculation and for the LMP2
correlation calculation. However, when dealing with the Dual Basis Set option (see the DUAL-
BAS keyword in Section 6) this condition is no more expected to be verified. An algorithm which
permits to evaluate the contribution of singly excited configurations to the correlation energy has
been implemented.

*******************************************************************************

* *

* E(SINGLES): 0.00000000 *

* E(MP2+SINGLES): -0.02815541 *

* E(GRIMME+SINGLES): -0.03101104 *

* *

*******************************************************************************

10.1.12 Final Summary

A final summary recovers the HF starting energy and adds to it the MP2 correlation energy:

*******************************************************************************

* *

* HF ENERGY: -0.8059243416E+01 *

* HF+MP2 ENERGY: -0.8087398824E+01 *

* HF+GRIMME ENERGY: -0.8090254458E+01 *

* *

*******************************************************************************

10.1.13 The Lennard-Jones extrapolation to infinity

Taking advantage from the well-known London law r−6 governing the behavior of the pair-energies
with respect to pair-distancies, a scheme as been implemented which permits to recover the contri-
bution of Very Distant pairs, otherwise completely neglected, to the correlation energy by means
of a Lennard-Jones extrapolation.

This strategy is activated by default for any 2D and 3D system. First, the parameters used
during this procedure are written; the user can modify them by virtue of the LENJONES key-
word.

*******************************************************************************

* *

* INPUT PARAMETERS FOR LENNARD-JONES CALCULATION (ANGSTROM) *

* *

*******************************************************************************
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MIN FL-FL DIST. FOR COEFFICIENT CALCULATION (D-LJ1): 6.00

MAX DISTANT-PAIR DISTANCE (D-LJ2): 12.00

MAX RADIUS (D-LJ3): 63.04

ENERGY TRUNCATION TOLERANCE (TOL-LG): 0

The extrapolated contribution to the correlation energy is then printed along with a summary of
the HF and MP2 energies:

*******************************************************************************

* *

* LENNARD-JONES EXTRAPOLATED ENERGY CONTRIBUTIONS: *

* *

*******************************************************************************

LJ(MP2) -0.0000013065

LJ(GRIMME) -0.0000010032

HF ENERGY -8.0592434162E+00

HF+MP2+LJ ENERGY -8.0874001308E+00

HF+GRIMME+LJ ENERGY -8.0902554612E+00

10.1.14 MP2 correction to the HF Density Matrix

Since we put the DENSMAT keyword in the input, the calculation of the MP2 correction to the
HF Density Matrix is activated.

*******************************************************************************

* *

* MP2 CORRECTION TO THE HF DENSITY MATRIX *

* *

*******************************************************************************

LMP2 DENSITY MATRIX CORRECTION FOR THE OCCUPIED ORBITALS

MAXIMAL NONSYMMETRICITY 0.1901E-07

THE TRACE IN AOs -0.2652E-01

LMP2 DENSITY MATRIX CORRECTION FOR THE VIRTUAL ORBITALS

MAXIMAL NONSYMMETRICITY 0.3676E-07

THE TRACE IN AOs 0.2652E-01

TOTAL LMP2 DENSITY MATRIX CORRECTION

MAXIMAL NONSYMMETRICITY 0.4078E-07

THE TRACE IN AOs 0.6697E-07
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The MP2 correction to the HF Density Matrix is then written on the external unformatted fortran
unit 63 which can be passed to the Properties program using the PMP2 keyword in order to
compute any DM-related quantity.

*******************************************************************************

MP2 DENSITY MATRIX HAS BEEN WRITTEN ON UNIT 63

*******************************************************************************

10.2 A more complex case: the hexagonal Argon crystal

In this Section we comment on the output of an MP2 calculation for the hexagonal structure of
Argon crystal. This is a more interesting case with respect to LiH both because there are more
WFs per atom and because two Ar atoms per cell are present; a richer analysis of bunches, flowers
and petals can thus be carried out. Note that only relevant points of the output are commented
on, in a perspective of highlighting the differences with respect to the previously fully analysed
example of LiH.

10.2.1 The recovery of the information from Properties

The table collecting information on the localization and symmetrization of WFs and their classi-
fication looks as follows:

*******************************************************************************

* *

* WANNIER FUNCTIONS (WF) INFORMATION FROM THE PROPERTIES CALCULATION *

* *

*******************************************************************************

-------------------------------------------------------------------------------

BUNCH FLOWER FLOWER PETAL | TYPE ATOM1 (G1) - ATOM2 (G2)

ABS REL |

-------------------------------------------------------------------------------

1 1 1 1 | NON BONDING AR 1 ( 1) -

1 2 2 2 | NON BONDING AR 2 ( 1) -

-------------------------------------------------------------------------------

2 3 1 3 | NON BONDING AR 1 ( 1) -

2 3 1 4 | NON BONDING AR 1 ( 1) -

2 4 2 6 | NON BONDING AR 2 ( 1) -

2 4 2 7 | NON BONDING AR 2 ( 1) -

-------------------------------------------------------------------------------

3 5 1 5 | NON BONDING AR 1 ( 1) -

3 6 2 8 | NON BONDING AR 2 ( 1) -

-------------------------------------------------------------------------------
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DUALBAS Dual Basis Set option activated
KNET Construction of the HF Density Matrix (DM)
8 New shrinking factor
MEMORY Memory required
2000 Value in Mbytes
DFITTING Density Fitting input block
DIRECT Direct-space technique
PG-VTZ DF auxiliary basis set
ENDDF End Density Fitting input block
DOMDEF Definition of the excitation domains
6 There are six flowers
1 3 For the first flower, three stars of neighbors are included
1 2 3 The stars are the first the second and the third
2 3

1 2 3

3 3

1 2 3

4 3

1 2 3

5 3

1 2 3

6 3

1 2 3

PAIR Only WF pairs up to 4 Å are calculated via the DF approximation
4. 4.

END End of Cryscor input

Table 10.2: The Cryscor input used for the calculation we are commenting on.

Please also refer to Chapter 2 to fully comprehend this commented output part.
In each cell there are two symmetry-related Ar atoms which are the site of the SAWFs. Consider
Ar 1 as the reference site. Its site-symmetry is C3v (as that of N in ammonia). Its 8 valence
electrons will be associated to 4 WFs, which, intuitively, will have a symmetry of type s, px, py

and pz.
The total of 8 WF/petals (4 for each Ar) is classified in 3 bunches and 6 flowers: the first bunch

contains two flowers with one petal each, the second two flowers with two petals each, the third
one two flowers with one petal each. What does this mean?

It means that the two s-type WF of each Ar are grouped into one bunch (with one flower, one
petal), whereas the other 6 petals/WF (3 per each Ar) group is divided into two bunches: one
containing, let’s say, the pz-like orbitals (2, one per each Ar), and the other one containing the rest,
i.e. the px, py-like orbitals (4, two per Ar). For this bunch, corresponding to Bunch n. 2, the two
flowers contain each two petals, i.e. the degeneracy px-py between WF is recognized. Evidently,
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in the hexagonal Ar crystal, the px-py-pz degeneracy does not hold any more and only the px-py is
left.

Is there a way to verify these conjectures? Let us check the petal (WF) composition one by
one. We need to refer to the properties output for this. So for instance either petals n. 1 and 2 in
bunch 1 or petals n. 5 and 8 in bunch 3 have to have a prevalently s-orbitals composition.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

WANNIER NUMBER 1 ATOMIC EXTENT 1.0016

CENTROID’S COORDINATES R0: 0.19529E+01 -0.33825E+01 0.27654E+01

EXPECTATION VALUE OF (R-R0)**2: 0.23882E+01

SECOND ORDER TENSOR IN CARTESIAN AXES:

X Y Z

X -0.38137E+01 0.66055E+01 -0.54005E+01

Y 0.66055E+01 -0.11441E+02 0.93539E+01

Z -0.54005E+01 0.93539E+01 -0.76475E+01

TENSOR EIGENVALUES:

A -0.44409E-15 B -0.22902E+02 C -0.88818E-15

PRINCIPAL AXES:

X Y Z

A 0.86603E+00 0.50000E+00 0.00000E+00

B -0.40807E+00 0.70679E+00 -0.57786E+00

C -0.28893E+00 0.50044E+00 0.81614E+00

NON BONDING WANNIER FUNCTION

DISTANCE CENTROID-ATOM 1( 0 0 0) : 0.44949E-08

ATOMIC POPULATION DATA:

1 AR( 0 0 0) 0.9992

A.O. POPULATIONS OF ATOM 1( 0 0 0):

0.0009 -0.0162 0.0000 0.0000 0.0000 0.1862 0.0000 0.0000

0.0000 0.5474 0.0000 0.0000 0.0000 0.2809 0.0000 0.0000

0.0000

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

WF (petal) 1 composition can be read in the last lines of the reported output portion. The
population can be assigned to the correct orbital like this: the basis set used in the calculation is
an S, SP, SP, SP, SP one; the list of population corresponds exactly to this order, i.e. S, 4*(S, Px,
Py, Pz). So it would be:
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A.O. POPULATIONS OF ATOM 1( 0 0 0):

0.0009 (-> S)

-0.0162 (-> S)

0.0000 (-> Px) 0.0000 (-> Py) 0.0000 (-> Pz)

0.1862 (-> S)

0.0000 (-> Px) 0.0000 (-> Py) 0.0000 (-> Pz)

0.5474 (-> S)

0.0000 (-> Px) 0.0000 (-> Py) 0.0000 (-> Pz)

0.2809 (-> S)

0.0000 (-> Px) 0.0000 (-> Py) 0.0000 (-> Pz)

Therefore petal n. 1 is effectively of s-type symmetry; so is consequently and effectively petal n.2
of the 1st bunch (orbital s-like for the second Ar atom in the cell).

WANNIER NUMBER 2 ATOMIC EXTENT 1.0016

[...]

A.O. POPULATIONS OF ATOM 2( 0 0 0):

0.0009 -0.0162 0.0000 0.0000 0.0000 0.1862 0.0000 0.0000

0.0000 0.5474 0.0000 0.0000 0.0000 0.2809 0.0000 0.0000

0.0000

Then petals 5 and 8 are pz-like (one per each Ar, indicated as ATOM 1 and ATOM 2) and are
grouped in bunch 3.

WANNIER NUMBER 5 ATOMIC EXTENT 1.0073

[...]

A.O. POPULATIONS OF ATOM 1( 0 0 0):

0.0000 0.0000 0.0000 0.0000 -0.0028 0.0000 0.0000 0.0000

0.3269 0.0000 0.0000 0.0000 0.3578 0.0000 0.0000 0.0000

0.3145

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

WANNIER NUMBER 8 ATOMIC EXTENT 1.0073

[...]

A.O. POPULATIONS OF ATOM 2( 0 0 0):

0.0000 0.0000 0.0000 0.0000 -0.0028 0.0000 0.0000 0.0000

0.3269 0.0000 0.0000 0.0000 0.3578 0.0000 0.0000 0.0000

0.3145

Finally the remaining petals present either a px-type symmetry (petals n. 3 and 6.) or a py-type
symmetry (petals n. 4 and 7.). The degeneracy px-py is recognized so that petals 3 and 4 belong
to the same flower n. 3, and petals 6 and 7 to the same flower n. 4.

53



WANNIER NUMBER 3 ATOMIC EXTENT 1.0074

[...]

A.O. POPULATIONS OF ATOM 1( 0 0 0):

0.0000 0.0000 -0.0028 0.0000 0.0000 0.0000 0.3268 0.0000

0.0000 0.0000 0.3580 0.0000 0.0000 0.0000 0.3143 0.0000

0.0000

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

WANNIER NUMBER 6 ATOMIC EXTENT 1.0074

[...]

A.O. POPULATIONS OF ATOM 2( 0 0 0):

0.0000 0.0000 -0.0028 0.0000 0.0000 0.0000 0.3268 0.0000

0.0000 0.0000 0.3580 0.0000 0.0000 0.0000 0.3143 0.0000

0.0000

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

WANNIER NUMBER 4 ATOMIC EXTENT 1.0074

[...]

A.O. POPULATIONS OF ATOM 1( 0 0 0):

0.0000 0.0000 0.0000 -0.0028 0.0000 0.0000 0.0000 0.3268

0.0000 0.0000 0.0000 0.3580 0.0000 0.0000 0.0000 0.3143

0.0000

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

WANNIER NUMBER 7 ATOMIC EXTENT 1.0074

[...]

A.O. POPULATIONS OF ATOM 2( 0 0 0):

0.0000 0.0000 0.0000 -0.0028 0.0000 0.0000 0.0000 0.3268

0.0000 0.0000 0.0000 0.3580 0.0000 0.0000 0.0000 0.3143

0.0000

10.2.2 The excitations domains

According to the input setting, the domains (per flower) have the size printed in the output section
reported in the following.

As already pointed out, there are 6 flowers for the hexagonal Ar crystal; each flower domain is
defined according to a geometrical criterium (DOMDEF keyword). The resulting domain is made of
the PAOs belonging to 13 atoms, i.e. the reference atom itself plus its 12 first neighbours. The
g-vectors where these neighbours are located are reported as well.

Note that, according to the “label” of the atom, there are two types of first neighbours, the
two irreducible Ar atoms, named after ATOM 1 AR and ATOM 2 AR. This is the reason why in input
three stars instead of two need to be specified: there is in Cryscor a control over this label, so
that only the 6 neighbours with the same label as the reference one are recognized as first star,
and a second one needs to be declared in order to include them all.
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*******************************************************************************

* *

* FLOWERS EXCITATION DOMAINS *

* *

*******************************************************************************

DEFINED AS THE SET OF PAOs BELONGING TO THE FOLLOWING SET OF ATOMS:

FLOWER N. 1

ATOM 1 AR - N. OF G: 7 ---> 1 5 6 3 2 7 4

ATOM 2 AR - N. OF G: 6 ---> 43 21 26 15 5 6

FLOWER N. 2

ATOM 1 AR - N. OF G: 6 ---> 42 20 27 14 4 7

ATOM 2 AR - N. OF G: 7 ---> 1 4 7 2 3 6 5

FLOWER N. 3

ATOM 1 AR - N. OF G: 7 ---> 1 2 4 6 7 5 3

ATOM 2 AR - N. OF G: 6 ---> 26 6 5 15 43 21

FLOWER N. 4

ATOM 1 AR - N. OF G: 6 ---> 27 7 42 20 4 14

ATOM 2 AR - N. OF G: 7 ---> 1 3 5 7 6 4 2

FLOWER N. 5

ATOM 1 AR - N. OF G: 7 ---> 1 5 6 3 2 7 4

ATOM 2 AR - N. OF G: 6 ---> 43 21 26 15 5 6

FLOWER N. 6

ATOM 1 AR - N. OF G: 6 ---> 42 20 27 14 4 7

ATOM 2 AR - N. OF G: 7 ---> 1 4 7 2 3 6 5
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An alternative way would have been the use of the DOMDEF2 keyword, in which case the
input would be:

DOMDEF2

6

13 13 13 13 13 13

with an output result analogous to what just discussed. Note also that, since additional atoms are
automatically added in order to fill the outermost star of atoms, the same result is obtained for
other values of DOMDEF2 comprised between 8 and 13 atoms.

10.2.3 The Dual Basis Set option

Since the Dual Basis Set is activated here, we expect the contribution of singly excited configura-
tions to be non zero. This quantity should be taken into account when providing the final MP2
energy, and is automatically done in the output, as shown below:

ENERGY DUE TO SINGLY EXCITED CONFIGURATIONS

(IT SHOULD BE ZERO FOR THE BRILLOUIN THEOREM)

*******************************************************************************

* *

* E(SINGLES): -0.00026316 *

* E(MP2+SINGLES): -0.30121289 *

* E(GRIMME+SINGLES): -0.29010508 *

* *

*******************************************************************************

FINAL SUMMARY

*******************************************************************************

* *

* HF ENERGY: 0.0000000000E+00 *

* SINGLES ENERGY: -0.2631583767E-03 *

* MP2 CORRELATION ENERGY: -0.3009497268E+00 *

* HF+SINGLES+MP2 ENERGY: -0.3012128852E+00 *

* HF+SINGLES+SCS(GRIMME) ENERGY: -0.2901050812E+00 *

* *

*******************************************************************************
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Chapter 11

Theory in pills

The difference between the “exact” ground-state energy E0 and the Hartree-Fock (HF) energy
EHF of a system is a negative quantity called correlation energy :

Ecorr = E0 − E
HF (11.1)

The ground-state wavefunction |Φ0〉 of an N -electron system can always be written as follows in
terms of the N -detors constructed from the HF spin-orbitals (so):

|Φ0〉 = |Ψ0〉+
a∑

h

Aa
h|Ψ

a
h〉+

ab∑

hk

≫ Aab
hk|Ψ

ab
hk〉+

abc∑

hkl

≫ Aabc
hkl|Ψ

abc
hkl〉+ · · · (11.2)

Here |Ψ0〉 is the HF detor, containining the N occupied so’s (h, k, l, . . . ), |Ψabc...
hkl...〉 is the detor

obtained by substituting in the HF detor the so’s h, k, l, . . . with the virtual ones a, b, c, . . . ; the
symbol≫ means that the indices must be h > k > · · · and a > b > · · · . By left-multiplying equa-
tion (11.2) by 〈Ψ0|Ĥ , the following exact expression for the correlation energy is easily obtained:

Ecorr = 〈Ψ0|Ĥ|Φ0〉 − 〈Ψ0|Ĥ|Ψ0〉 = E0〈Ψ0|Φ0〉 − E
HF =

ab∑

hk

≫ Aab
hk〈Ψ0|Ĥ|Ψ

ab
hk〉 (11.3)

In the last passage the Brillouin theorem has been used, along with the fact that the fundamental
configuration does not interact with the triply (or more) excited ones. It follows that the correlation
energy is perfectly determined when the coefficients of the doubly excited configurations are known.

11.1 The local approach

In this subsection we present the main features of the local correlation methods. As it is well
known from the molecular experience, the computational cost of conventional electron correlation
methods like MP2 or CCSD(T) increases dramatically with the size of the system. Being N the
size of the system, the scaling of the computational effort (CPU calculation time, required memory
and disk) for the MP2 method is O(N 5). This scaling becomes O(N 7) for MP4 and O(N 8) for
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MP5. It is clear that such a scaling wall avoids the usage of these canonical correlation-methods
for the study of big systems. The steep scaling mainly originates from the delocalized character of
the canonical Molecular Orbitals (MO) basis. The increase of the CPU time with the molecular
size is O(N 7) for the best method of choice, which is usually CCSD(T).

From a physical point of view, however, there should be no need to correlate all electrons in an
extended molecular system (or in a crystal): dynamic electron correlation in non-metallic systems
is a short range effect with an asymptotic distance dependence ∝ r−6 (dispersion energy), and thus
the high-order dependence of the computational cost with the number of electrons of the system
is just an artifact of the canonical orthogonal basis, in which the diverse correlation methods have
traditionally been formulated. One natural way to circumvent this problem is to use local orbitals
to span the occupied and virtual spaces. Such local correlation methods have been proposed by
several authors.

Particularly successful has been the local correlation method originally proposed by Pulay
[7], which was first implemented by Saebø and Pulay for Møller-Plesset perturbation theory up
to fourth order (LMP2 - LMP4(SDQ) without triple excitations) [8]. While in the early works
of Saebø and Pulay [8] [15] it could already be shown that only 1-2% of the correlation energy
(relative to conventional calculations with the same basis set) is lost by the local approximation,
it was not yet possible at the same time to demonstrate that the scaling of the computational cost
can actually be reduced, and that larger systems than with conventional methods can be treated.

Significant progress in this direction was only made during the last few years when the local
correlation methods were combined with newly developed integral-direct techniques [16]. Within
such a framework, it has been possible to develop O(N ) algorithms (asymptotic linear scaling
of all computational resources, i.e. CPU time, memory and disk space) for Local-MP2 [17] and
Local-CCSD.

In the local correlation methods as applied to molecules, the occupied space is usually spanned
by localized molecular orbitals (LMOs), which are obtained from the occupied canonical orbitals of
a previous SCF calculation by virtue of a unitary localization procedure [18] [19], which maintains
the orthogonality of the occupied SCF orbitals. The idea of Pulay was to abandon the orthogonality
of the virtual orbitals, and to use a basis of functions which resemble the atomic orbitals (AOs) as
much as possible. Obviously, the AOs are optimally localized, but since they are not orthogonal to
the occupied manifold one cannot use them straightforwardly. The strong orthogonality between
the occupied and virtual spaces must be retained, since otherwise excitations would violate the
Pauli exclusion principle and the theory would become very complicated. Localized virtual orbitals
(PAOs) can be obtained by projecting out the occupied space from the AOs.

11.1.1 Local description of the occupied manifold: Wannier Functions

Wannier functions (WFs) are used in the Cryscor program to span the occupied HF manifold.
They are obtained from the set of occupied crystalline orbitals (COs) via a unitary transformation
and they are provided by the Crystal code. WFs are quadratically integrable inR3 and, therefore,
they are always mostly localized within a finite spatial region [5]. Localized orbitals are extensively
used in molecular quantum chemical applications. They permit an easy and intuitive description
of the electronic structure of the system in terms of chemical well known concepts such as lone
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pairs, shared electrons, covalent or chemical bonds. Furthermore localized orbitals are a promising
starting point for the treatment of electron correlation in extended systems within the so-called
local methods. In the Crystal program a variational basis set of contracted Gaussian-type
Functions (GTFs) is used. Each GTF is the product of a real solid spherical harmonic times a
radial Gaussian function. Basis functions (indicated as χµ(r− sµ −TM)) are linear combinations
of primitive GTFs centered in sµ + TM, where µ = 1, 2, . . . ,M labels the basis functions assigned
to the reference primitive cell; sµ is the position of a given atom within the reference cell and TM

is a lattice vector that translates this atom to its corresponding periodic image in cell M. By
convention T0 = 0 and M⊕ L stands for TM⊕L = TM + TL (analogously the M⊖ L symbol
is used to label the difference of two lattice vectors). These contracted GTFs are called Atomic
Orbitals (AOs).

A Wannier function in the reference cell φi0(r) can be expressed in terms of the AO basis set
as follows:

φi0(r) =
M∑

µ=1

L−1∑

M=0

LM
µ,iχµ(r− sµ −TM) (11.4)

where the first and second sums in the RHS run over the M AOs in the reference cell and the L
cells of the system, respectively. It is worth noticing that L is actually ∞, but infinite sums can
in general be restricted to a finite number of terms. WFs φi0(r) are conventionally assigned to the
reference cell and hence in the following they will be called reference WFs. In Cryscor the WFs
are truncated (see keyword TOBJ at page 23). Exploiting translational invariance one can always
write:

φiI(r) = φi0(r−TI)

=

M∑

µ=1

L−1∑

M=0

LM⊖I
µ,i χµ(r− sµ −TM) (11.5)

The set {φi(r)} of all the periodic images of the reference WF φi0(r) does additionally fulfill the
following orthonormality condition:

∫
φi(r−TI)

∗φi(r−TI′)dr = 〈φiI | φiI′〉 = δII′ (11.6)

that can be generalized to any pair of Wannier functions of the system:

∫
φi(r−TI)

∗φi(r−TI′)dr = 〈φiI | φi′I′〉 = δII′δii′ (11.7)

where integration is performed over the whole R3 space. Owing to the localized nature of the AO
basis set, a Mulliken analysis [20] [21] can be performed to obtain the atomic populations of the
i-th WF:

QAA,i0 =
∑

µ∈AA

M∑

ν=1

L−1∑

N=0

LA
µ,i

(
LN

ν,i

)∗
SµAνN (11.8)
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The above expression refers to the Mulliken population contribution of atom A (in cell A) to the
i-th reference WF. The first sum in the RHS runs over basis functions belonging to (i.e. centered
on) atom AA; SµAνN is the overlap matrix which is given by

SµAνN =

∫
drχµ(r− sµ −TA)χν(r− sν −TN ) = SN⊖A

µν (11.9)

In equation (11.8) the total electronic population of WF i is normalized to one:

P∑

A=1

L−1∑

A=0

QAA,i = 1 ∀i (11.10)

where P is the number of atoms in the primitive cell. The information contained in the atomic
populations can be employed to characterize the spatial distribution of the i-th WF electrons, by
defining the atomic delocalization index λi as

λi =

[
P∑

A=1

L−1∑

A=0

(QAA,i)
2

]−1

(11.11)

The parameter λi provides an estimate of the mean number of atoms contributing to WF i [19].
Since WFs are localized functions, for the i-th WF a centroid 〈r〉i can be found whose spatial
coordinates are:

〈rα〉i =

∫
dr|φi(r)|

2rα α = 1, 2, 3 (11.12)

where r ≡ (r1, r2, r3). The degree of localization of the i-th WF can also be estimated in terms of
the corresponding expectation values of the second order moment tensor,

τ i
αβ = 〈φi|(rα − 〈rα〉i)(rβ − 〈rβ〉i)|φi〉 (11.13)

The trace of τ i
αβ , σ2

i =
∑3

α=1 τ
i
αα, gives a measure of the spatial spread of WF φi(r).

11.1.2 Local description of the virtual manifold: Projected Atomic
Orbitals

Projected Atomic Orbitals (PAOs) are used to span the virtual manifold (according to Pulay’s
proposal [7]) as WFs are used to span the occupied manifold. Let us define the projector operator
onto the occupied HF space P̂ as follows:

P̂ =
occ∑

k

|k 〉〈 k| =
∑

µMνN

|χµM 〉DµMνN 〈χνN | (11.14)

In the first equality of the above equation the projector P̂ is expressed in terms of canonical
occupied crystalline orbitals |k 〉 while in the second one, via a Brillouin zone integration over all
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|k 〉 , the projector is expressed in terms of AOs where DµMνN is the density matrix in an AO
representation.

The corresponding projector onto the virtual space is then easily obtained: Q̂ = 1̂ − P̂ . By
acting with Q̂ on any one of the local functions χµM(r) of the original AO set, a Projected AO (or
simply PAO) is obtained:

Q̂χµM(r) = (1̂− P̂ )χµM(r) = χ̃µM(r) (11.15)

The set of PAOs so generated constitutes a nonorthogonal, linearly dependent, incomplete set
of local functions, strictly orthogonal to all WFs. At the same time PAOs are appreciably well
localized and keep the symmetry of the parent AOs.

Once a basis set has been selected, to each WF pair is assigned a set of PAOs, those belonging to
the corresponding pair domain. Since PAOs are non-orthogonal and usually very diffuse functions,
quasi-linear dependencies may take place within that set. To get rid of these redundant functions,
the corresponding overlap matrix is diagonalized, and those eigenvectors discarded whose eigen-
values σ are less than a given threshold tσ that can be set via the LONTOL keyword discussed
at page 23; the default value is 10−4. The Local OrthoNormal (LON) set of virtual functions is
obtained.

The problem of the adequacy of the standard PAO set to describe excitations is a more delicate
issue, because the basis sets usually adopted to solve the HF equations for crystals are calibrated
so as to describe accurately only the occupied subspace.

11.1.3 Symmetry properties of WFs and PAOs

Symmetry is systematically exploited in all ab initio computational treatments of periodic systems,
for instance in Crystal. This happens in two ways, essentially. First, reciprocal space techniques
can be used for factorizing the eigenvalue problem of representative matrices of totally symmetric
operators (like the Fock or overlap matrices) according to the irreducible representations (irrep) of
the group; the same techniques can be used for expressing convolutions over direct lattice vectors
as simple products in k-space. In both cases, point group symmetry allows us to restrict the
problem to the irreducible wedge of the Brillouin zone and, at special k points, to further factorize
the calculation according to the irreps of that point. Advantage is taken of these opportunities in
Cryscor for an efficient generalization to periodic systems of the DF technique, as will be shown
in Section 11.2.4. Secondly, symmetry equivalences exist between various kinds of local quantities
which enter the calculation, like products of functions involved in one- and two-electron integrals,
which allows us to restrict their estimate to an irreducible subset. The exploitation of the latter
type of symmetries is less standard, and plays a central role in the context of local correlation
approaches; therefore, it is presented below in some detail. We are interested here in the sym-
metry properties of our basis functions (AOs, PAOs, WFs), and of their product combinations.
Reference is made to the theory of site symmetry in crystals, and to the definition and properties
of symmetry adapted Wannier functions (SAWF). The systems considered are insulators that is,
their HF manifold consists of fully occupied energy bands.

We shall consider our overcomplete basis set (AOs, PAOs, SAWFs) as composed of “symmet-
rical objects” (SO), SΛ, each associated to a “site” rΛ. An SO is an orthonormal set (in our
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jargon, a “flower)” of nΛ local functions (its “petals”), which are a basis of an nΛ-dimensional
representation αΛ of the point group GΛ of site rΛ (site group). The group GΛ is a subgroup of
the point group of the crystal. For example, a shell of ℓ-type AOs on a given atom forms an SO of
dimensionality nΛ = 2 ℓ + 1, having its site in the nuclear position. An operator of GΛ acting on
the petals of SΛ will simply effect a unitary transformation among the latter (that is, the SO is
left unchanged). An operator not belonging to GΛ (in particular, a pure translation) will instead
transform it into another flower, equivalent to the previous one, apart (possibly) from a translation
and a unitary transformation among its petals. All the flowers so generated from a reference one
with its site in the zero cell, SΛ,0, will form a “bunch” , Λ, which contains all images of the parent
flower in the other cells, SΛ,G, but may also comprise more than one flower per cell. The bunch is
a basis of an induced representation (indrep) of the space group.

The effect of the general space group operator V̂ onto an SO can then be formulated as follows:

V̂ SΛ,G = W
Λ
V SΛV ,GΛ

V

(11.16)

The cell, GΛ
V , the label ΛV , identifying the specific SO within the cell, and the unitary W

Λ
V matrix,

corresponding to the representation αΛ of dimension nΛ, are determined by the program following
a group theoretical analysis. Vice versa, given any two flowers of the bunch, there exists at least
one V̂ which carries the first into the second one.
If the AOs in the basis set are centered in the crystal atoms, equivalent atoms having equivalent
sets, then each AO shell constitutes an SO, as anticipated. Since the Q̂ projector has the full
symmetry of the crystal (∀ V̂ : [Q̂, V̂ ] = 0), shells of PAOs have the same symmetry as the parent
AO shells. The standard basis set of GTFs used in Cryscor, is therefore perfectly suited for the
present purposes.
The characterization of WFs as SOs is less obvious; appropriate SAWFs have to satisfy the following
conditions.

1. The number of SAWFs per cell must equal the number of filled bands explicitly treated; the
set of all SAWFs must span the same manifold as the states belonging to those bands.

2. They must form an orthonormal set (which is not required for PAOs).

3. They must be classifiable as SOs, in the sense that they transform according to equation
(11.16).

4. Among different SAWF sets satisfying the above conditions, the one should be preferred
which maximizes the number of symmetry equivalences between those quantities which are
most important in determining the computational cost (see below).

5. SAWFs should be as local as possible owing to some localization criterion.

Satisfying all these conditions is not trivial, and the solution is often not unique. A strategy
which has proved usually effective has been proposed where the construction of the SAWFs is
guided by the localization procedure [6]. Localized functions are classified as bond, atomic, etc,
relying on their atomic populations, and symmetrized accordingly. However, the functional adopted
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(Ruedenberg, Boys [18], Pipek-Mezey [19], etc.) may be influential on the type of symmetry of the
SAWF set which is obtained. The following can be noted for this purpose.
At variance with PAOs, the sites of the SAWF flowers may not coincide with atomic nuclei (the
case of diamond is an example). In particular, if the site is at a general point, the bunch of that
SAWF contains as many single-petal flowers per cell as is the order of the point group of the
crystal. Considering all possible sites and their indreps may result in some cases in a large number
of types of SO.
A variety of combinations of such SOs can be selected, in principle, compatible with condition
1 in the list above. Among them, the best one should be preferred owing to criterion 4, and
a trial set of orthonormal SAWFs is constructed accordingly. Finally, unitary transformations
should be performed among them so as to maximize localization while preserving the symmetry
characterization.

11.1.4 Wannier functions: distances and domains

As will be clarified in the following, the main approximation of the LMP2 method (or more
generally of every method formulated within a local approach) is the truncation of various sums,
running in principle over the whole (infinite) sets of WFs and PAOs of the crystalline system, in
the fundamental equations. The sum over WFs can be truncated according to a distance criterion
while for each pair of WFs the sum over PAOs can be limited to virtual functions lying in a spatial
vicinity of the two WFs of the pair. As a first step, it is then necessary to introduce for any pair
(φiI(r), φjJ (r)) of WFs a measure DiI,jJ of the distance between them.

A kernel [i0]0 can be associated to each reference WF φi0(r) and then transferred to the whole
set {φi(r)} of its periodic images in the crystal. This minimum domain is defined as the set of any
atom of the system contributing to the total Mulliken electronic population of the WF φi0(r) for
more than a given threshold Q0. In other words, remembering equation (11.8), only atoms AA
satisfying the following equation are included in the kernel [i0]0:

[i0]0 = {AA} \ QAA,i0 =
∑

µ∈AA

M∑

ν=1

L−1∑

N=0

LA
µ,i

(
LN

ν,i

)∗
SµAνN ≥ Q0 (11.17)

In the Cryscor program Q0 has the default value 0.1 but it can be modified by the user with
the MINPOP keyword (see page 17). If Q0 is reasonably chosen then the kernel represents a
minimal chemical description of the corresponding WF. If the selected WF is a bond one then the
corresponding kernel will be the union of the two atoms belonging to the bond; otherwise if the
selected WF is an atomic one, then the corresponding kernel will contain only one atom (the one
on which the WF is centred). The distance DiI,jJ between two general WFs can be defined as the
minimum distance between any two atoms belonging to the respective kernels [iI]0 = {BB} and
[jJ ]0 = {B′B′}:

DiI,jJ = min
{BB}{B′B′}

|sB − sB′ + TB −TB′| (11.18)

It follows that a classification of WFs pairs by distance is now possible. Since excitations from
two local occupied orbitals (as suggested from molecular quantum chemical experience) become
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progressively less important with increasing distance between the two centers, the classification
of WFs according to their relative distance leads to the possible exploitation of a hierarchical
treatment of WFs pairs (and of the corresponding integrals which constitute the real computational
bottleneck of the method).

Wannier functions pairs can be classified into strong, weak, distant and very distant pairs
according to the following scheme:






DiI,jJ = 0 strong

0 < DiI,jJ ≤ d1 weak

d1 < DiI,jJ ≤ d2 distant

DiI,jJ > d2 very distant

where d1 and d2 are two parameters to be carefully tuned. Our default values are d1 = 8 Å and
d2 = 12 Å. For most purposes, strong and weak pairs are treated in CRYSCOR as a unique set,
that of close-by pairs. The 2-electron repulsion integrals (ERI) corresponding to close-by pairs
are either exactly solved or accurately and ecomomically evaluated via a density fitting periodic
(DFP) scheme [11, 12], which essentially consists in expressing product distributions as a linear
combination of auxiliary fitting functions. ERIs associated to distant pairs are treated via a mul-
tipolar approximation, which can safely be used only in the case of almost zero overlap between
the interacting product distributions. Finally, the very distant pairs are totally excluded from
the explicit computation; this condition is crucial for the asymptotically linear scaling of com-
putational resources versus the size of the system. However, the contribution to the correlation
energy from the neglected pairs can be recovered by exploiting the long range r−6 dependence of
pair-energies with respect to their distance, via a Lennard-Jones extrapolation technique (see the
keyword LENJONES at page 18 and Section 11.2.3).

As mentioned in the previous pages it is mandatory to associate an excitation domain [i0] to
each reference WF φi0(r). The general i-th domain consists of a set of atoms {AA}i: when atom
AA is said to belong to a given domain it is intended that the full set of PAOs centred on atom
A (in cell A) belongs to that domain. As it happens for kernels, also excitation domains are
transferred to the whole set {φi(r)} of periodic images of φi0(r) in the crystal. In the Cryscor

program there are different ways to define WF domains.
An explicit definition is feasible via the DOMDEF keyword (see page 21), by specifying for

each WF the set of atoms {AA}i. This method is user-friendly for systems with few symmetry
unique WFs, otherwise it is cumbersome and may possibly lead to mistakes.

When we are dealing with molecular crystals (with m molecules M1, M2, . . . , Mm in the
reference cell) it can be convenient to work with molecular domains (DOMMOL keyword, see
page 22) that is to say, to include in each domain of a WF belonging to the j -th molecule Mj the
whole set of atoms of that molecule.

Still another criterion can be used, based on the one proposed in a molecular context by
Boughton and Pulay [22] and explained in detail below: it can be activated using the DOMPUL
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keyword (see page 21).

Boughton-Pulay automatic excitation domain selection

For a given WF, some atoms are selected whose combined basis functions best span the WF
subspace. The spanning criterion is based upon a least-squares fit of the functions on the selected
atoms to the WF. A selection of atoms (of functions) is required to span its corresponding WF by
at least 98%, judged by the least-squares residual [22]. In the Cryscor program the default value
of this spanning parameter TBP is then 0.98 but it can be changed via a dedicated input card.

For a given reference WF φi0(r), the least-squares residual (which has to be less than 1−TBP )
for a proposed selection Σi0 of atoms (and consequently of PAOs) is

f(Σi0) = min

[∫
dr (φi0(r)− φ

′
i0(r))

2

]
(11.19)

where

φi0(r) =
∑

µM

LM
µ,i0χµ(r− sµ −TM)

φ′
i0(r) =

∑

νN∈Σi0

σN
ν,i0χν(r− sν −TN ) (11.20)

For this purpose we must solve the following set of equations for all σB
β,i0:

∂f(Σi0)

∂σN
ν,i

= −2
∑

µM

LM
µ,i0SµMνN + 2

∑

βB∈Σi0

σB
β,i0SνNβB = 0 (11.21)

or in matrix notation
SΣi0σi0 = vi0 = S⋄Li0 (11.22)

where SΣi0 is the overlap matrix of the collected elements whose rows and columns span the
functional space Σi0, Li0 and σi0 are the complete and partial WF coefficients matrices respectively,
S⋄ is the overlap matrix whose columns span the space Σi0 but whose rows span the full crystalline
basis. The least-squares residual of the proposed atomic selection for WF φi(r) is then:

f(Σi0) = 1− σ
T
i0vi0 = 1− LT

i0S
⋄T SΣ−1

i0 S⋄Li0 (11.23)

where we used the usual convention AT
ij = Aji for any matrix A. Equation (11.23) can be rewritten

more explicitly in the following way:

f(Σi0) = 1−
∑

µM∈Σi0

∑

νN∈Σi0

∑

αA

∑

βB

Li0,αA⊕NS
⋄
αA,ν0S

Σ−1

i0

νN ,µMS⋄
µ0,βBLβB⊕M,i0 (11.24)
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11.2 Local-MP2 method for periodic systems

The following notations will be adopted:

1. Standard Latin or Greek indices (µ, i, a, P , etc.) label functions within a given unit cell.

2. Calligraphic indices M, I, A, P denote lattice vectors and the corresponding crystal cell.

3. Bold Latin or Greek indices combine function and cell index: i ≡ (iI), a ≡ (aA), etc.

4. χµM, χνN , ... or equivalently µM, νN , ... are atomic orbitals (AOs).

5. ψaA, ψbB, ... or equivalently aA, bB, ..., or a, b, ... are projected atomic orbitals (PAOs).

6. φi I , φjJ , ... or equivalently iI, jJ , ..., or i, j, ... are Wannier functions (WFs).

7. ρi aA = φi0φaA is the WF-PAO product density.

8. ΞPP , ΞQQ, ... or equivalently PP, QQ are fitting functions.

11.2.1 Local MP2 Energy

Let us recall here the expression of the MP2 energy as obtained within the canonical approach:

EMP2 =

occ.∑

i

occ.∑

j>i

vir.∑

a

vir.∑

b>a

〈ΨHF |H|Ψab
ij 〉〈Ψ

ab
ij |H|Ψ

HF 〉

E0 − E0(ab
ij )

=

=

occ.∑

i

occ.∑

j>i

vir.∑

a

vir.∑

b>a

|〈ij||ab〉|2

ǫi + ǫj − ǫa − ǫb
(11.25)

In our LMP2 method, the local functions representing occupied and virtual manifolds of the HF ref-
erence are constructed differently. The occupied space is spanned by orthonormal WFs, generated
from the canonical Bloch orbitals produced by Crystal using the Localization-Wannierization
scheme by Zicovich-Wilson et. al [5]. The WFs are symmetrized a posteriori according to the
procedure suggested by Casassa et al. [6] For the virtual manifold, as suggested by Pulay [7],
we use PAOs, which are AOs projected out from the occupied space. PAOs form a redundant
nonorthogonal set, but at the same time are appreciably well localized and have the symmetry of
the parent AOs.

The orbital invariant MP2 energy per unit cell in the local approximation is given by the fol-
lowing expression:

ELMP2 =
∑

i

∑

{jJ near i}

ELMP2
i,jJ (11.26)

ELMP2
i,jJ =

∑

(aA,bB)∈[i,jJ ]

Ki,jJ
aA,bB

(
2 T i,jJ

aA,bB − T
i,jJ
bB,aA

)
(11.27)
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Here Ki,jJ
aA,bB ≡ (i0, aA | jJ , bB) are the ERIs, and T i,jJ

aA,bB are the excitation amplitudes. The only
approximation introduced is the truncation of the two sums in these equations.
Consider first equation (11.27). For a given pair of WFs i and j, the excitation space is confined to
their spatial vicinity or, in other words, to the so called PAO domain [ij] of that pair. This means
that the amplitudes T ij

ab are assumed to be non-zero only if the PAOs a and b are spatially close

to the WFs i or j. To validate this approximation we note that the integrals K ij

ab and amplitudes

T ij

ab both decay exponentially with the distance between, say, i and a. The former follows from
the exponential decay of the WFs and PAOs, and the latter from the decay of the corresponding
integrals, as is clearly seen from the orbital invariant MP2 equations (see Section 11.2.2). The
energy expression (11.27) squares this decay. There are different ways to determine the PAO
domains. One usually employs the Boughton-Pulay procedure, which chooses the atoms to be
included in the domain (and all the corresponding AOs) so that the orbital populations on these
atoms sum up to a certain threshold.
WF i in the energy expression (11.26) is located in the reference cell, while the range of the WFs
j in principle spans the whole space. Since WFs and PAOs are mutually orthogonal, the decay of
the integrals K ij

ab and of the amplitudes T ij

ab with respect to the distance between the WFs i and
j is r−3. However, in the energy expression (11.27) this decay is again squared and so the energy
contributions decay according to the well-known London’s law as r−6. As a consequence, for each
i the list of j’s can be restricted to a set {j near i} beyond which the energy contributions are
negligibly small. In molecular LMP2 applications the cut-off radius (i.e., the maximum distance
between i and j) is usually set to 15 Bohr. In 2D and especially 3D crystals, the situation is
somewhat different, because of their compactness. It will be shown in Section 11.2.3 how to
evaluate all contributions up to infinity, while restricting the actual computation to WF pairs
within a distance of 15-20 Bohr.

11.2.2 Local MP2 amplitudes

In order to obtain the LMP2 energy according to (11.26) and (11.27), one needs to evaluate the
amplitudes T ij

ab and the integrals K ij

ab. We postpone the discussion of the approaches to the in-
tegral calculation to section 11.2.4, and focus here on the procedure of evaluation of the LMP2
amplitudes for a precomputed set of the integrals.

The MP2 orbital-invariant amplitude equations in an orthogonal basis take the form:

0 = Rij

ab = K ij

ab +
∑

c

(FacT
ij

cb + T ij
acFcb)−

∑

k

(FikT
kj

ab + T ik
abFkj). (11.28)

Here Rij

ab are the residuals, which become zero at convergence, and Fab and Fij the Fock matrix
elements in the PAO and WF subspaces. By solving this system of linear equations one obtains
the MP2 amplitudes. From (11.28) it clearly follows that at convergence, owing to the exponential
decay of the Fock matrix, the decay rate of the amplitudes is dictated by that of the integrals, as
was mentioned in the previous subsection. When the local approximations on the pair list {ij} and
orbital domains [ij] are invoked, the number of unknowns T ij

ab becomes smaller than the number
of equations. In order to solve the system, the residuals (and the corresponding equations) which
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do not map their amplitude counterparts are disregarded. This restriction actually is equivalent to
formulating the MP2 theory within the set of doubly excited determinants, truncated accordingly
to the local approximations introduced.
For non-orthogonal virtual orbitals (PAOs), the LMP2 equations take a more complicated form:

Rij

ab = K ij

ab + Aij

ab +Bij

ab , (11.29)

with the matrices Aij

ab and Bij

ab defined as follows:

Ai,jJ
aA,bB =

∑

(cC,dD)∈[i,jJ ]

[
F C⊖A

ac T i,jJ
cC,dD SB⊖D

db + SC⊖A
ac T i,jJ

cC,dD FB⊖D
db

]
(11.30)

Bi,jJ
aA,bB = −

∑

(cC,dD)∈u[i]

SC⊖A
ac β ′i,jJ

cC,dD SB⊖D
db −

∑

(cC,dD)∈u[jJ ]

SC⊖A
ac β ′′i,jJ

cC,dD S
B⊖D
db (11.31)

β ′ i,jJ
cC,dD =

∑

{kK near i}

T i,kK
cC,dD F

J⊖K
kj (11.32)

β ′′ i,jJ
cC,dD =

∑

{kKnear jJ}

FK
ik T

kK,jJ
cC,dD (11.33)

Here SG
ab (F G

ab) denotes the element of the overlap (Fock) matrix between functions a0 and bG, and
the simplifications due to translational symmetry are implicitly introduced. The sum in equation
(11.30) runs over all PAOs in the WF pair domain [i, jJ ]. In equation (11.31) the sums are running
over the “united domains” u[i] or u[jJ ]:

u[i] =
⋃

kK

[i0 kK] , u[jJ ] =
⋃

kK

[jJ kK] , (11.34)

with the union comprising not only symmetry-unique pairs WFs (see Section 11.1.3). Finally,
the sums in equations (11.32) and (11.33) run over all WFs which can form pairs with i or jJ ,
respectively.
The cost for computing the B-term of the residual (equation 11.31) scales as O(N2), where N is
the number of pairs. In 3D crystals this corresponds to R6

cut scaling. (Rcut is the cutoff distance
for the pairs included in the calculation), as the number of pairs increases cubically with the cutoff
distance. Moreover, although the number of different i, jJ pairs can be reduced by considering
only the Nirr symmetry irreducible ones (see section 11.1.3), in the sums of equations (11.32) and
(11.33) one has to take into account all possible WFs kK forming pairs with i or jJ . Advantage
can be taken, however, of the sparsity of the f, S, T matrices. Exploiting this sparsity leads to a
reduction of the overall scaling from O(NirrN) to just O(Nirr).

We solve the system of the equations using the Gauss-Seidel iterative scheme. The procedure
is similar to one used in the molecular local methods. Briefly, it consists of the following:

1. Evaluation of the residual matrix for a given pair (ij).

2. Transformation of the residual matrix into the so-called pseudo-canonical basis set, an or-
thonormal set of virtuals which spans the space of the domain [ij], and diagonalizes the Fock
matrix in this space.
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3. Calculation of the updates for the amplitudes of the pair (ij) (in the pseudo-canonical set
the expression for the updates takes a particularly simple form).

4. Back-transformation of the updates to the PAO basis.

In step 1, the most recently updated amplitudes of other pairs (B-terms, equations (11.32), (11.33))
are used.
It follows from equation (11.31) that evaluating the residuals for a given pair involves also ampli-
tudes corresponding to many other pairs. In order to avoid excessive input/output, we keep all the
amplitudes in memory. The size of the amplitude vector depends quadratically on the size of the
domains, and therefore when extended domains or high-quality orbital basis sets are used, such
storage may become a memory bottleneck. In this case one would have to save amplitudes on disk
and invoke a paging algorithm.
The computational complexity of the matrix multiplications in the evaluation of the residuals scales
cubically with respect to the domain size. So again, for large domains or basis sets, the computa-
tional time needed for solving the LMP2 equations can become dominant. There is an interesting
technique of Laplace transformed LMP2 formalism, which provides the amplitudes without solv-
ing the LMP2 equations (a Laplace quadrature for the amplitudes must be evaluated numerically
instead). Interestingly, this approach allows the restriction on the residuals to be released, which
gives usually an energy closer to the canonical MP2 one. An adaptation of this scheme to the
periodic case is a matter of future work.

High quality correlation calculations require the use of rather extended basis sets (at least of
triple-zeta quality and for weakly bound systems also with diffuse functions). However, such basis
sets can cause serious difficulties when solving the HF equations for periodic systems, due to quasi-
linear-dependence and convergence problems. In order to satisfy these contradictory requirements
we have introduced the dual basis scheme, where different basis sets for HF and LMP2 can be
selected. In such case, however, the Brillouin theorem is no longer valid, since the LMP2 reference
is not actually the HF reference for the LMP2 basis set. Hence non-zero singles amplitudes T i

a also
contribute to the energy:

ELMP2
singles =

∑

i,aA

Fi,aA T
i
aA (11.35)

If the HF basis set is of a reasonable quality (say double-zeta), the occupied-virtual blocks of the
Fock matrix are small. Then the equations for the singles amplitudes take the form:

0 = Ri
a = Fia +

∑

b

Fab T
i
b −

∑

b j

Fij T
j

b Sba. (11.36)

The equations for the singles and doubles amplitudes are completely decoupled, and the singles
part is computationally cheap.

11.2.3 Lennard-Jones extrapolation for very distant pairs

One of the distinctive features of local correlation schemes in molecular calculations is that one
can safely ignore the contributions Eij from pairs which are “very distant” from each other, that
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is, when the distance between the respective core domains exceeds a pre-fixed value d2 (typically,
d2 = 15 Bohr). This approximation is crucial to warrant N -scaling of computational costs, and is
justified by the fact that at large distances pair energies follow the London D−6

ij law as is present
in the well known 6-12 Lennard-Jones expression, Dij being the distance between the centers of
the two distributions. However, in 3D crystals the number of pairs grows quadratically with the
distance d and the contribution to the correlation energy from all pairs at a distance Dij ≥ d
falls off merely as d−3. Considerably larger cutoff distances d2 should be adopted with respect
to molecular calculations in order to achieve comparable accuracy, with a formidable impact on
computational costs. This problem is easily circumvented by taking advantage of the simple law
of inter-pair decay rate and of translational symmetry so as to extrapolate to infinity the sum of
far-off contributions. The procedure adopted by us is as follows.

1. Each symmetry irreducible pair of SAWF flowers, (I0, JJ ), is characterized by a distance
DI,JJ = |rI0 − rJ0 − G|, where rX0 are the sites of the respective SAWFs in the zero cell
(see section 11.1.3: note that this definition of distance between WF flowers is different from
that adopted in equation 11.18 for the classification of WF pairs according to proximity).
Its contribution to the correlation energy, EI,JJ , is the sum of all the terms as in equation
11.27 between the respective petals

2. After performing an MP2 calculation within a distance d2, the different irreducible flower
pairs are classified into separate sets M(IJ) according to the pair of bunches I, J the two
flowers belong to, irrespective of the order.

3. Within each M(IJ) set, only those pairs are considered for which dlj ≤ DI,JJ ≤ d2, where
dlj is a distance set from input such that the asymptotic London d−6 behaviour is deemed
to be approximately satisfied beyond it (typically, dlj=10 Bohr). If there are enough pairs in
the set, a best fit Lennard-Jones coefficient C lj

(IJ)
is determined, by minimizing the quantity:

S =
∑

(I,JJ )∈M(IJ)

[
EI,JJ − Ẽ

lj

(IJ)
(DI,JJ )

]2
(11.37)

where:
Ẽlj

(IJ)
(d) = C lj

(IJ)
d−6 (11.38)

Note that in a general case, for two pairs in the same set and at the same distance, the
energy may not coincide because the two flowers have different respective orientations; the
coefficient determined is then an average between all possible orientations.

4. A radius D > d2 is set from input. The contribution from all flower pairs within D, but
not explicitly included in the calculation is evaluated by direct summation using expression
(11.38) with the appropriate coefficients. The contribution Eres(D) from all residual pairs is
finally obtained by integration up to infinite distance:

Eres(D) =
4 π

3 Vcell



∑

I,J

C lj

(IJ)
nI nJ


D−3 , (11.39)
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where Vcell is the volume of the unit cell of the crystal, and nI , nJ are the number of flowers
per cell of the respective bunches.

5. A similar formula is used for 2-dimensional structures.

This scheme can be activated by the LENJONES keyword.

11.2.4 The ( ia | jb ) integrals

In this section we discuss one of the most essential issues of the LMP2 method, the evaluation of the
ERIs ( ia | jb ), which are occurring in both the energy and amplitude (Section 11.2.2) equations.
The techniques employed in Cryscor for dealing with this problem differ according to the distance
between the two WFs, i and j. For close-by pairs (Dij ≤ d1) a Density Fitting Periodic technique
(DFP), as described in Section 11.2.4, is the recommended option, although by default ERIs are
evaluated analytically (which can serve for calibration purposes).

At intermediate distances (distant pairs), the multipolar approximation provides a very efficient
and accurate solution of the problem (see Section 11.2.4). Finally, for very distant pairs where
pair energies follow the r−6 regime, the ERIs are not needed because their contribution to energy
can be evaluated by extrapolation techniques, as shown in Section 11.2.3.

Density Fitting Periodic (DFP) technique for strong and weak pairs

The applicability of our method to systems of general interest is limited by the computational
resources needed for the evaluation of electron repulsion integrals (ERI) between two Product
Densities (PDs) of a WF times a PAO. This bottleneck arises from the very nature of WFs and
PAOs, which are expressed as a linear combination of the AO basis functions each. It becomes
especially severe in the crystalline environment where the functions, although localized, are ex-
tended in principle to infinity. A way to overcome this difficulty is offered by exploiting density
fitting method for periodic systems. This technique represents an extension of the DF approach
implemented in the molecular context to crystals, and allows a reduction of the overall CPU time
by up to three orders of magnitude [11, 12, 13].

Two approaches are implemented, which are both stable and have, on average, comparable
performance. These are the direct-space fitting and the reciprocal-space fitting, activated by the
DIRECT and KSPACE keywords.

The basic concept is to approximate each PD as a linear combination of auxiliary functions
ΞP , here and in the following called fitting functions (FF):

ρiaA ≡
∑

µM,νN

cµMi cνN⊖A
a φµM φνN

≈
∑

PP

dPP
iaA ΞPP ≡ ρ̃i aA (11.40)
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where the coefficients dPP
iaA of the linear combination are determined by minimizing a suitable error

functional, expressed as:

∆iaA = (ρiaA − ρ̃iaA |w12 | ρiaA − ρ̃iaA) =

= (∆ρiaA |w12 |∆ρiaA) (11.41)

Common choices for w12 are r−1
12 or δ12, corresponding to the Coulomb or overlap metric, respec-

tively; here and in the following we will refer to the former, since it leads to a simpler formalism,
and is the metric used in the present implementation. The equation determining the coefficients
then reads:

dPP
iaA =

∑

QQ

[
J−1
]
PP,QQ

JQQ
iaA , (11.42)

where we have introduced the notations:

JPP,QQ =

∫
dr1

∫
dr2

ΞPP(r1) ΞQQ(r2)

r12
;

JQQ
iaA =

∫
dr1

∫
dr2

ρiaA(r1) ΞQQ(r2)

r12
(11.43)

Each ERI is then approximated as:

Ki, jJ
aA, bB ≈ K̃i, jJ

aA, bB =

= (ρ̃iaA|ρjJ bB) + (ρiaA|ρ̃jJ bB)− (ρ̃iaA|ρ̃jJ bB) =

=
∑

PP

dPP
iaAJ

PP
jJ bB (11.44)

This expression is “robust” in the sense that it guarantees that the error in the approximated
integrals is second order with respect to errors in the fitted densities. The last equality in (11.44)
holds true provided that the same fitting domain is chosen for fitting both the ρiaA and ρjJ bB

densities; in periodic systems this condition is fulfilled only if we formally consider an infinitely
spread fitting basis set.

The auxiliary set (FF set) must be flexible enough to correctly reproduce PDs which hold
angular momenta of higher order with respect to the AOs of the basis set itself. Pre-optimized
large sets of GTFs are commonly used for this purpose and work is currently going on for obtaining
well-performing FF sets. Morover, a scheme has been proposed by Manby, where the FF set, apart
from few GTFs, basically consists of so-called Poisson Type Functions (PTF). For a given GTF
orbital (labeled as G), the corresponding PTF, labeled as P , is defined as:

P (r) = −∇2/4π ·G(r) . (11.45)

PTFs hold neither charge nor multipoles of any order; furthermore, since Coulomb integrals
involving PTFs transform to kinetic integrals, they are faster to compute and, what is especially
important, vanish exponentially with distance. When used to fit charge densities which hold non-
zero multipoles, PTFs must be complemented with GTFs of different angular momentum in order
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to reproduce the multipoles; since PDs occurring in the LMP2 method have zero charge, s-type
GTFs are not required.

In local-correlation methods, where the fitted densities are localized, also a local density fitting
(LDF) technique is often adopted, where instead of the full set of the fitting functions only density-
specific spatially restricted domains of the fitting functions (the so called fit-domains) are utilized.
This technique is mandatory to achieve linear asymptotic scaling of the computational cost with
the system size. This corresponds to the direct space fitting, activated by the keyword DIRECT
in the DFITTING section.

For each set of PDs, having the same i index and aA on the same atom, a specific fit domain is
defined. For accurate fitting the fit-domains should be chosen such that the corresponding fitting
functions would provide a sufficient support to the fitted densities. Therefore we need a simple
and at the same time stable technique for estimating the population of the density to be fitted on
an atom. We define a quasi-population qiaA

DD of the product density ρiaA on an atom D in cell D
as:

qiaA
DD =

∑

µ∈DD

(
∑

ν∈DD

Cµ iSµνCν aA

)2

, (11.46)

where Cµ aA and Cνi are the LCAO coefficients of PAOs and WFs, respectively, and S is the AO
overlap matrix. Such a definition of the population slightly differs from the usual Mulliken form.
The latter is not appropriate for our needs because the charge of any product density ρia is zero
due to the strict orthogonality between occupied and virtual spaces. A fit-domain in our approach
comprises a certain number NDD of atoms DD with the highest populations qiaA

DD for a block of
PAOs belonging to a common center. As will be shown below, setting NDD to 10-15 atoms is
usually sufficient, but can be tuned through the NMINCENT keyword. Fitting domains so
defined are finally adapted to fulfill symmetry invariance properties of the corresponding PD.

The approach activated by the KSPACE keyword is different, and is based on the reformula-
tion of equation (11.44) in reciprocal space. As a first step we need to define a mesh of k points to
sample the reciprocal space and obtain the Fourier Transform (FT) of the quantities of interest.
This means dropping the lattice vector index P and dealing for each k with matrices having a size
equal to the number of FFs in the reference cell:

K̃i, jJ
aA, bB =

∑

k

K̃i, j
aA, bB⊖J (k) exp(−ık ·RJ) =

=
∑

k

∑

P

dP
iaA(k)JP

jbB⊖J (k) exp(−ık ·RJ)

(11.47)

where dP
iaA(k) are the fitting coefficients in the reciprocal space:

dP
iaA(k) =

∑

Q

[J(k)]−1
PQJ

Q
iaA(k), (11.48)

while JP
iaA(k) and JPQ(k) are the Fourier-images of the integrals (11.43). Thus, the fitting is

performed in reciprocal space independently for each k point, and the approximated integrals are
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finally obtained through a Back Fourier Transformation (BFT). The range of the summations for
the FT step is defined for each WF according to a sphere centered on its centroid. The radius is
set by default to 10 Å, and can be tuned through the FITRAD keyword.
A well known issue of the Coulomb series is their divergent behavior, which in the context of DFP
emerges when evaluating the FT of integrals involving FFs of p−GTF type. Although the main
fraction of the fitting basis set consists of Poisson functions, making the corresponding integrals
exponentially decay and the Coulomb series thus quickly converge, one still needs a small number
of p-type GTFs to represent the dipole moments of the fitted densities. The convergence of the
series involving d- f - and g- GTFs is not divergent, but also rather slow, and thus are more
conveniently treated in direct space as well. The same holds for the most diffuse part of the PTO
basis (with exponent less than 1.0 Bohr−2) which might cause numerical instabilities in the FT,
and are also treated in the direct space together with the GTOs (this can be regulated via the
MIXEXP keyword).

The basis set is divided into two parts: a rich PTF basis spanning the whole crystal, labeled as
P, and a density-specific small basis, to fit the multipole moments, labeled as G. The PTF-fit is
then performed in reciprocal space according to equations (??)-(??), while the GTF-based local fit
is performed in direct space. However, a straightforward application of this scheme is not possible,
since the metric matrix cannot be inverted either in direct or in reciprocal space (in the former case,
one would need to transform the slowly decaying GTF-based integrals into the reciprocal space,
while for the latter one would deal with a metric matrix of infinite dimensions due to the extended
PTF-part of the basis). In order to decouple the two sets we project the GTF part of the auxiliary
basis onto the space complementary to that spanned by the PTFs, using the Coulomb-projection
operator:

|Γ) = |G)−
∑

PP ′

|P )[J{P}]−1
P,P ′(P

′|G) (11.49)

The projected GTFs Γ can now be used as the direct space part of the fitting basis instead of the
GTFs G. The block diagonal form of the metric matrix J, with zero off-diagonal blocks (Γ|P):

(G|G) (P|G)

(P|G) (P|P)

J = ⇒

(Γ|Γ) 0

0 (P|P)

now permits an independent inversion of both diagonal blocks: the PTF-block in the reciprocal
space, and Γ-block in the direct space. We have named this technique the direct-reciprocal-
decoupled (DRD) DF.

The functions Γ serve as moment-fitting functions completely in the same manner as GTFs,
since they differ from the latter only by a linear combination of momentless PTFs. Moreover, the
quality of the fit does not deteriorate when shifting from the GTOs to the functions Γ, since the
projection (11.49) does not reduce or modify the space spanned by the initial fitting basis. The Γ-fit
is performed in the same way as the direct-space fit of equation 11.44, but with the projected fitting
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functions Γ instead of usual fitting functions and with much smaller fit-domains. Fit-domains are
defined as in 11.46, but large domains are in fact not needed, since the fitting basis has a large
reciprocal part which is not restricted to any local domain. For this reason, the corresponding
default is set to 6 atoms in the case of a reciprocal space fit, which can be tuned as well using the
NMINCENT keyword. We point out, that the opposite projection, i.e. the projection of the
PTF part from the space spanned by GTFs (say |Π) = |P )−

∑
GG′ |G)[J{G}]−1

G,G′(G′|P )) does not
preserve translational invariance, which inhibits the reciprocal treatment of such functions.

Once the fit-domains are defined, one has to evaluate the integrals (Γ|Γ) and (ia|Γ). Using the
definition of the functions Γ (equation 11.49) yields:

(Γ|Γ) = (G|G)−
∑

PP ′

(G|P )[J{P}]−1
P,P ′(P

′|G) (11.50)

and
(ia|Γ) = (ia|G)−

∑

PP ′

(ia|P )[J{P}]−1
P,P ′(P

′|G) (11.51)

The first terms in the RHS of the expressions (11.50) and (11.51) are the usual integrals with the
direct-space set of functions, while the second terms can be interpreted as the equivalent integrals,
but fitted by the PTF-only fitting basis. As discussed above, this fit can be carried out only in the
reciprocal space. Therefore, one has to employ the very same machinery of the PTF reciprocal-
space fit as for the actual 4-index ERIs using equations (11.47) and (11.48). Summarizing :
(i) the set Γ it is a local set, since it is formed from the local G set and the same set but fitted by
PTFs (see below).
(ii) the set Γ can carry multipole moments, since it differs from G only by some linear combinations
of momentless PTFs, and
(iii) the robust fit with the set Γ can be performed independently from the PTF-fit, since the
inversion of the J matrix is now conveniently factorized.
The latter allows us to subdivide the fitting of the integrals in two separate contributions:

K̃ = K̃P + K̃Γ . (11.52)

The first term is the fit of the integrals through PTFs only, which constitute the major fraction of
the auxiliary basis set and can be efficiently handled in reciprocal space without any convergence
problems. The second term is the local fit and is processed in direct space.

Multipolar expansion for distant pairs

Consider a WF-PAO PD, ρiaA, where the WF (i) is in the reference cell at site ri, and the PAO
(aA) belongs to the domain of i. The set {Q(i; aA)ℓ,m} of all multipole moments of ρiaA with
respect to ri up to a maximum order ℓ, (set by default to 4 and modifiable via the MULTIPO
keyword), is calculated once and for all; the zero-order moment is always zero, due to WF-PAO
orthogonality. When two PDs ρiaA, ρjJ bB are so far apart that they are essentially confined to
separate spheres, the corresponding ERI can be approximated as a sum of interactions between
their multipoles centered in ri and rj + RJ , respectively:

Ki, jJ
aA, bB ≈

∑

ℓ,m;ℓ′,m′

Q(i; aA)ℓ,m U i, jJ
ℓ,m;ℓ′,m′Q(j; bB⊖J )ℓ′,m′

(11.53)
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where Ui, jJ is an interaction matrix which depends only on the relative position rj + RJ − ri

of the two centers. The translational equivalence of PDs centered in different cells has here been
exploited.

Note that the systematic use of the multipolar scheme for WF pairs beyond a distance dMP

requires that “cross excitations” from one WF to the domain of the other are neglected, because
they always involve ERIs between overlapping PDs which cannot be described according to equa-
tion (11.53). This further approximation is justified by the fact that the norm of “cross PDs”
exponentially decays with the distance between the two WFs.
The multipolar approximation allows a fast evaluation of integrals for distant pairs: the computa-
tional cost is insignificant and high accuracy is warranted. Our experience suggests that a suitable
value for dMP is 8 Å.

11.3 LMP2 correction to the Hartree-Fock Density Matrix

In a second-quantization formalism, the one-electron position-spin Density Matrix (DM) γ(x;x′)
associated with a normalized many-electron wavefunction, corresponding to the selected state |Ψ〉
can be written as follows:

γ(x;x′) =
∑

PQ

〈Ψ|a†P aQ|Ψ〉 Φ⋆
P (x′) ΦQ(x) (11.54)

Here reference is made to an orthonormal set of one-electron spin-orbitals, ΦQ(x) ≡ ΦQ(r, ω),

which span the Fock space in which |Ψ〉 is defined, and a†Q, aQ are the corresponding creation and
annihilation operators. By integrating γ(r, ω; r′, ω) over the spin coordinate ω, we get R(r; r′), the
so-called position DM. The momentum DM P (p;p′) is just the six-dimensional Fourier transform
of R(r; r′).

With reference to the AO basis set {χµg(r)} adopted in the Crystal and Cryscor codes, the
position DM can always be written as follows:

R(r; r′) =
∑

g,l

∑

µν

Pµνg χµl(r) χν(l+g)(r
′) (11.55)

where the translational invariance of the lattice has been used.
In the next two subsections we first recall how this matrix is obtained from a single-determinantal

solution |ΨHF〉 or |ΨDFT〉, then we show how to calculate the MP2 correction to its HF estimate.
The discussion is restricted to closed-shell, non-conducting crystals.

Density Matrix from single-determinantal wavefunctions

The single-determinantal “X” wavefunction (X = HF, KS-DFT) can be expressed in two equivalent
ways:

|ΨX〉 ←→ || · · · ψX
j,κα ψX

j,κβ · · · || =

= || · · · wX
i,gα wX

i,gβ · · · || (11.56)
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In the first line, the Slater determinant is constructed with the canonical doubly-occupied crys-
talline orbitals (CO) that satisfy the self-consistent-field equations:

ĥX ψX
j,κ(r) = εX

j,κ ψ
X
j,κ(r) (11.57)

ψX
j,κ(r) =

∑

µ

aX
j,κ;µ

[
∑

g

eı κ·g χµg(r)

]
(11.58)

The band index j runs from 1 to N0/2, while the wavevector κ is one of the L vectors in the
first Brillouin Zone of reciprocal space which form the Monkhorst net associated with the selected
cyclic crystal. In the second line, the same determinant is expressed using the Wannier functions,
labelled by g, one of the L direct lattice vectors of the cyclic crystal, and by the in-cell index i
running from 1 to N0/2; the WFs are real-valued, well localized, symmetry adapted functions of r,
[5, 6] which span altogether the same space as the occupied COs and are translationally equivalent
and mutually orthonormal:

wX
i,0(r) = wX

i,g(r + g) ; (11.59)∫
wX

i,g(r)w
X
i′,g′(r) dr = δii′δgg′ (11.60)

Using equation (11.54) with |Ψ〉 = |ΨX〉 and making reference to the orthonormal sets {ΦQ(r, ω)}
of the COs or of the WFs, gives us, after integration over spin:

RX(r; r′) = 2

N0/2∑

j=1

∑

κ

ψX
j,κ(r) [ψX

j,κ(r
′)]∗ (11.61)

= 2

N0/2∑

i=1

∑

g

wX
i,g(r) w

X
i,g(r

′) (11.62)

Substitution of equation (11.58) into equation (11.61) and comparison with equation (11.55) gives
immediately:

PX
µνg = 2

N0/2∑

j=1

∑

κ

e−ı κ·g
[
aX

j,κ;µ

(
aX

j,κ;ν

)∗]
(11.63)

The MP2 correction to the HF Density Matrix

The MP2 level of theory provides a first-order approximation of the correlated ground-state wave-
function:

|Ψ′〉 = ζ
(
|ΨHF〉+ |Ψ(1)〉

)
, (11.64)

where ζ is the appropriate normalization factor. A technique has been implemented in Cryscor

which is based on a “Lagrangian” approach, according to which the DM provides the first order
response of the system energy E to an arbitrary external one-electron perturbation α X̂, with α
being the strength parameter, and the one-electron operator X̂ designated in the first-quantization
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as x̂c. If |Ψ〉 were the outcome of a variational calculation performed for the unperturbed system,
the Hellmann-Feynmann theorem:

dE

dα

∣∣∣∣
α=0

= 〈Ψ|X̂|Ψ〉 =

=
∑

PQ

〈Ψ|a†P aQ|Ψ〉

∫
Φ⋆

P (x) x̂cΦQ(x) dx

(11.65)

would hold. Comparison of (11.65) with equation (11.54) allows us to identify here the elements
RPQ of the density matrix in the {ΦQ} representation as the weighting factors for the matrix
elements of the perturbation operator XPQ =

∫
Φ⋆

P (x) x̂c ΦQ(x) dx in the energy derivative expres-
sion. In a non-variational treatment, as is the case for MPn or standard CC methods, the energy
still can be written via a variational expression, by setting up the corresponding Lagrangian. How-
ever, in this case, in addition to the excitation amplitudes which are variational parameters also in
the standard variational approach, a second set of parameters is to be varied. These parameters
are the Lagrange multipliers, corresponding to the MPn or CC equations used as the constraints
in the Lagrangian.

In the case of MP2, the Lagrangian is nothing else than the well-known Hylleraas functional.
Only the doubles amplitudes tijab, corresponding to the excitations from a pair of occupied orbitals
(i, j) to a pair of virtual ones (a, b), enter the MP2 formalism. Due to the symmetric form of

the Hylleraas functional, the Lagrange multipliers t
ij
ab turn out to be not independent variational

parameters, but rather the contravariant amplitudes: t
ij
ab = 2tijab − t

ij
ba.

Next, from the resulting expression of dE/dα|α=0, the weighting factors for the XPQ matrix
elements in analogy to (11.65) can be defined as the elements of the DM RPQ. In case of real or-
thonormal orbitals {φi(r)}, {ξa(r)} which span the occupied and virtual HF manifold, respectively,
the following expression for the MP2 correction to the HF position DM is obtained:

RMP2(r; r′) = −2
∑

kab

t
jk
ab t

ik
ab φi(r)φj(r

′) +

+2
∑

cij

t
ij
bc t

ij
ac ξa(r) ξb(r

′) , (11.66)

This formula can be generalized to the periodic case with the occupied space spanned by Wannier
functions, and the virtual space truncated according to the local approximation and represented
by nonorthogonal projected atomic orbitals.

An advantage of this approach is that from the size-extensive MP2 expression for the correlation
energy a size-extensive correlation correction to the HF DM is obtained. Besides, its implementa-
tion turns out to be computationally more efficient than that of 〈Ψ′′|a†P aQ|Ψ′′〉. It must be pointed
out that the Lagrangian DM formalism allows for a further improvement of the DM, in particular
by including in the Lagrangian the constraints required for the validity of the Brillouin theorem in
the presence of a perturbation, i.e the “orbital relaxation”. Presently the approach, implemented
in Cryscor is orbital-unrelaxed, but the work on inclusion of the orbital relaxation effects in the
DM is underway.
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